

DE

Contents

Glos	sary/ Al	bbreviations	1
List	of tables	S	4
List	of figur	es and graphs	8
Intro	oduction	1	10
1	Object	tive of Transport Market Study	11
	1.1	Aspects of establishing European rail freight corridor RFC OEM	11
	1.2	Theoretical and expected objectives of RFC OEM establishment	11
2	Legisl	ative aspects of RFC OEM establishment	13
3	Metod	lology of work and methods of investigation	15
	3.1	Working process of TMS elaboration	15
	3.2	Material used in TMS elaboration	16
	3.3	Methods used in TMS elaboration	17
4	RFC C	DEM characteristics	19
	4.1	RFC OEM basic structure	19
	4.2	RFC OEM graphical representation	21
	4.3	Technical parameters of RFC OEM	31
	4.4	Analysis of capacity and bottlenecks	44
	4.5	Description of EU TEN-T corridor Orient/East-Mediterranean	46
	4.6	Summary - basic comparison of RFC infrastructure	49
5	Analys	sis of economic, transport and traffic indicators	50
	5.1	Federal Republic of Germany	50
	5.2	Czech Republic	56
	5.3	Austria	61
	5.4	Slovak Republic	64
	5.5	Hungary	69
	5.6	Romania	74
	5.7	Republic of Bulgaria	78
	5.8	Greece	82

	5.9	Summary of presented and analysed data	86
6	Prognos	is of transport performance development	88
7	Compara	ative analysis of rail and road freight transport within the OEM Corridor	93
8	Analysis	s of connecting RFC OEM to Turkey	96
	8.1	Transport-economic analysis	96
	8.2	Transport infrastructure and international transport1	00
	8. <i>3</i>	Agreements between EU and Turkey1	10
	8.4	Formulation of conclusions and recommendations1	11
9	Transpo	rt potential of Third Countries1	13
10	Marketin	ng survey of OEM user satisfaction1	19
11	SWOT a	analysis of RFC OEM1	22
	11.1	Characteristics of the SWOT analysis process1	22
	11.2	SWOT analysis of RFC OEM1	24
12	Last Mil	e1	27
13	Strategic	cal map of the RFC OEM (proposed by VVÚZ)1	30
14	Conclus	ions and recommendations1	33
List o	of append	lices1	37

GLOSSARY/ ABBREVIATIONS

Glossary/ abbreviations	Definition
AB	Allocation Body
AT	Republic of Austria
AŽ	Hekurudha Shqiptare (Albanian railways)
BG	Republic of Bulgaria
CFL	Société Nationale des Chemins de Fer Luxembourgeois (Luxembourg National Railway Company)
CFM	Calea Ferată din Moldova (Railway operator in the Republic of Moldova)
CFR	Compania Națională de Căi Ferate (Manager of infrastructure in Romania)
C-OSS	Corridor One Stop Shop (Budapest) A joint body designated or set up by the RFC organizations for applicants to request and to receive answers, in a single place and in a single operation, regarding infrastructure capacity for freight trains crossing at least one border along the Freight Corridor (EU Regulation No. 913/ 2010, Art. 13).
CZ	Czech Republic
DB Netz	DB Netz AG (German railway infrastructure manager company)
DE	Federal Republic of Germany
EC	European Commission
ERTMS	 European Railway Traffic Management System ERTMS is a major industrial project being implemented by the European Union, which will serve to make rail transport safer and more competitive. It is made up of all the train-borne, trackside and lineside equipment necessary for supervising and controlling, in real-time, train operation according to the traffic conditions based on the appropriate Level of Application.

	European Train Control System
	This component of ERTMS guarantees a common standard that enables
	trains to cross national borders and enhances safety. It is a signalling and
ETCS	control system designed to replace the several incompatible safety
	systems currently used by European railways. As a subset of ERTMS, it
	provides a level of protection against overspeed and overrun depending
	upon the capability of the line side infrastructure.
EU	European Union
GR	Greece
GYSEV	GYSEV Raaberbahn (Austrian – Hungarian railway company)
GDP	Gross Domestic Product
HU	Hungary
HŽ	Hrvatske Željeznice (Croatian Railways)
IB	Infrabel (Belgium manager of railway infrastructure)
IM	Infrastructure Manager
ITT	Intermodal transport terminal rail-road, rail-water
MÁV	Magyar Államvasutak (Hungarian State railways)
MŽ	Македонски Железници (Macedonian Railways)
N/A	Not Available
NRIC	The National Railway Infrastructure Company (Bulgaria)
OSE	Οργανισμός Σιδηροδρόμων Ελλάδος (The Hellenic Railways
USE	Organization)
ÖBB	Österreichische Bundesbahnen (The Austrian Federal Railways)
DCG	Path Coordination System, formerly known as Pathfinder.
PCS	IT tool for coordination of path requests.
РКР	Polskie Koleje Państwowe (Poland State Railways)
PR	ProRail (Dutch Rail Infrastructure Manager, Capacity Allocation Body
FK	and Entity responsible for Traffic Control)
RFC OEM	Rail Freight Corridor Orient/ East- Med
RFI	Rete Ferroviaria Italiana (Italian railways manager of infrastructure)
L	

RNE	Rail Net Europe
RO	Romania
RU	Railway Undertaking
SBB	Schweizerische Bundesbahnen (Switzerland Federal Railways)
SK	Slovak Republic
SNCF	Société Nationale des Chemins de fer Français (French National Railway Corporation)
SŽ	Slovenske železnice (Slovenian Railways)
SŽDC	Správa železniční dopravní cesty (Manager of infrastructure in Czech Republic)
TCDD	Türkiye Cumhuriyeti Devlet Demiryolları (Turkish State Railways)
TEU	TEU- Twenty- foot Equivalent Unit (a measure used for capacity in container transportation)
TMS	Transport market study
TSI (TAF, TAP, OPE)	Technical Specification for Interoperability The European technical standards for interoperability. DIRECTIVE 2008/57/EC, Art. 2: a 'technical specification for interoperability' (TSI) means a specification adopted in accordance with this Directive by which each subsystem or part subsystem is covered in order to meet the essential requirements and ensure the interoperability of the rail system'. TAF/ TAP - Technical Specifications for Interoperability for Telematic Applications for Freight/ for Passenger Services
UŽ	Укрзалізниця (Ukrainian Railways)
VPE	Vasúti Pályakapacitás-elosztó Korlátolt Felelősségű Társaság (Capacity Allocation Body)
ŽS	Železnice Srbije (Serbian Railways)
ŽSR	Železnice Slovenskej republiky (Manager of infrastructure in Slovakia)

LIST OF TABLES

Table 1: Statistical and analytical indicators monitored in TMS	17
Table 2: Share of rail passenger and freight transport in the member states of RFC OEM	45
Table 3: Traffic points of TEN-T corridor Orient/East-Mediterranean	47
Table 4: Basic parameters of RFC corridors	49
Table 5: GDP per capita of the Federal Republic of Germany at purchasing power parity	50
Table 6: Development of investment in transport infrastructure in the Federal Republic of Germany	51
Table 7: Investment subsidies to railway lines included in RFC OEM	51
Table 8: Selected economic indicators of rail transport in the Federal Republic of Germany	52
Table 9: Imports of goods into EU from the Federal Republic of Germany in mill. €	52
Table 10: Imports of goods into EU from the Federal Republic of Germany in thous. tonnes	52
Table 11: Imports of goods into the Federal Republic of Germany from EU in mill. €	53
Table 12: Imports of goods into the Federal Republic of Germany from EU in thous. tonnes	53
Table 13: Transport performances in rail passenger and freight traffic in 2013 - 2015	55
Table 14: Structure of rail carriers in the territory of the Federal Republic of Germany	55
Table 15: Bottlenecks in railway infrastructure in the Federal Republic of Germany	56
Table 16: Comparison of transport time and transport charge on individual lines	56
Table 17: GDP per capita of the Czech Republic at purchasing power parity	57
Table 18: Development of investment in transport infrastructure the Czech Republic in mill. \in	57
Table 19: Investment subsidies to railway lines included in RFC OEM	58
Table 20: Transport performances in rail passenger and freight traffic in 2013 - 2015	59
Table 21: Structure of rail carriers in the territory of the Czech Republic	60
Table 22: Number of international freight trains according to individual divisions	60
Table 23: Bottlenecks in railway infrastructure in the Czech Republic	61
Table 24: Comparison of transport time and transport charges in the Czech Republic	61
Table 25: GDP per capita of Austria at purchasing power parity	62
Table 26: Number of railway undertakings with authorized access to ÖBB INFRA	62
Table 27: Passenger transport performances for 2013 – 2015	63
Table 28: Freight transport performances for 2013 – 2015	63
Table 29: GDP per capita of the Slovak Republic at purchasing power parity	65
Table 30: Development of investments in transport infrastructure in the Slovak Republic	65
Table 31: Investment subsidies to railway lines included in RFC OEM	65

DE-CZ-AT-SK-HU-RO-BG-EL RFC7 Orient/East-Med

Table 32:	Selected economic indicators of rail transport in the Slovak Republic	66
Table 33:	Transport performances in passenger and freight transport in 2013 – 2015	67
Table 34:	Structure of rail carriers on the territory of the Slovak republic	67
Table 35:	Volume of orders of performances on the lines included in RFC OEM	68
Table 36:	Average share of use of offered capacity	68
Table 37:	Comparison of transport charges in rail freight traffic in the Slovak Republic	68
Table 38:	Comparison of average transport times by rail traffic	69
Table 39:	Comparison of average speeds of individual type of trains on ŽSR network	69
Table 40:	GDP per capita of Hungary at purchasing power parity	69
Table 41:	Development of investment in railway infrastructure in Hungary	70
Table 42:	Selected economic indicators of railway infrastructure on GYSEV network	71
Table 43:	Selected economic indicators of railway infrastructure on MÁV network	71
Table 44:	Transport performances in rail passenger and freight transport on GYSEV network	72
Table 45:	Transport performances in passenger and freight transport on MÁV network	73
Table 46:	Structure of rail carriers on the territory of Hungary	73
Table 47:	Volume of capacity offer within RFC OEM for Hungary	73
Table 48:	Number of international freight trains according to individual divisions	74
Table 49:	GDP per capita of Romania at purchasing power parity	74
Table 50:	Development of investment in railway infrastructure in Romania	75
Table 51:	Amount of investment in railway infrastructure from external sources in Romania	75
Table 52:	Amount of investment in railway infrastructure from state budget	76
Table 53:	Selected indicators of rail traffic in Romania	76
Table 54:	Transport performances in rail passenger and freight traffic in 2013 – 2015	77
Table 55:	Structure of rail carriers on the territory of Romania	77
Table 56:	Number of international freight trains for 2013 – 2015 years	78
Table 57:	Bottlenecks of railway infrastructure in Romania	78
Table 58:	GDP per capita of Bulgaria at purchasing power parity	79
Table 59:	Analysis of development of transport and traffic performances in Bulgaria	79
Table 60:	Analysis of transport performances on the lines included in the OEM corridor	80
Table 61:	Structure of rail carriers on the territory of Bulgaria	80
Table 62:	Analysis of state subsidies to railway infrastructure in the Republic of Bulgaria	80
Table 63:	Quantitative indicators of rail freight transport on NRIC lines	81
Table 64:	GDP per capita of Greece at purchasing power parity	82

Table 65: Development of investment in railway infrastructure in Greece	83
Table 66: Distribution of investment in railway infrastructure in Greece	83
Table 67: Investment subsidies to railway lines included in RFC OEM	83
Table 68: Selected economic indicators of rail traffic in Greece	83
Table 69: Transport performances in rail passenger and freight traffic in 2013 – 2015	85
Table 70: Structure of rail carriers on the territory of Greece	85
Table 71: Average transport times by road and by rail on individual sections	85
Table 72: Comparison of type transports on the lines included in RFC OEM	86
Table 73: Prognosis – realistic scenario	
Table 74: Prognosis – optimistic scenario	90
Table 75: Prognosis – pessimistic scenario	91
Table 76: Comparative analysis of average running times	93
Table 77: Comparative analysis of charges	94
Table 78: GDP development and production in Turkey	96
Table 79: Forecast of GDP development in Turkey according to International Monetary	Fund97
Table 80: Import of goods to the EU from Turkey in millions €	98
Table 81: Import of goods to EU from Turkey in thousands tons	98
Table 82: Goods import to Turkey from EU in millions €	99
Table 83: Goods import to Turkey from EU in thousands tons	99
Table 84: Amount of loaded and unloaded goods in tonnes and number of containers at Tekirdağ	
Table 85: Amount of loaded and unloaded goods in 1000 t in Port of Haydarpaşa	104
Table 86: Selected indicators of railway transport in Turkey	105
Table 87: Modal split of passenger transport in millions passenger-km in Turkey	106
Table 88: Modal split of freight transport in millions tonne-km in Turkey	107
Table 89: Transport infrastructure of Turkey	108
Table 90: International rail transport performances in Turkey	109
Table 91: Transport performances by rail between Greece and Turkey	110
Table 92: Overview of Basic Data	113
Table 93: Overview of GDP development	114
Table 94: Import of goods to the EU in millions €	115
Table 95: Import of goods to the EU in thousands tons	115
Table 96: Goods import from EU in millions €	116

Table 97: Goods import from EU in thousands tons	116
Table 98: Strengths of RFC OEM	125
Table 99: Weaknesses of RFC OEM	125
Table 100: Opportunities set for SWOT analysis of RFC OEM	126
Table 101: Threats set for SWOT analysis of RFC OEM	126
Table 102: Development of investment in transport infrastructure in the Czech Republic in mill. CZK	141
Table 103: Transport performance in train-km in passenger traffic in the Czech Republic	141
Table 104: Transport performances in rail freight transport in the Czech Republic	141
Table 105: Comparison for type modes of transport in the Czech Republic	142
Table 106: Transport performance in train-km in passenger transport on the lines included in RFC OEM	143
Table 107: Transport performances in rail freight traffic in the Slovak Republic	143
Table 108: Transport performance in train-km in passenger traffic on GYSEV network	144
Table 109: Transport performances in rail freight traffic on GYSEV network	144
Table 110: Transport performance in train-km in passenger traffic on MÁV network	144
Table 111: Transport performances in rail freight traffic on MÁV network	145
Table 112: Bottlenecks on GYSEV railway infrastructure	145
Table 113: Bottlenecks on MÁV railway infrastructure	146
Table 114: Comparison of transport time and transport charges on GYSEV network	146
Table 115: Comparison of charges for type modes of transport on GYSEV network	146
Table 116: Comparison of transport time and transport charges on MÁV network	147
Table 117: Comparison of charges for type modes of transport on MÁV network	148
Table 118: Transport performance in train-km in passenger traffic in Romania	149
Table 119: Transport performances in rail freight traffic in Romania	149
Table 120: Analysis of charges on NRIC lines	150
Table 121: Transport performance in train-km in passenger traffic in Greece	151
Table 122: Transport performances in rail freight traffic in Greece	151

LIST OF FIGURES AND GRAPHS

List of figures:

Figure 1: Graphic representation of methodical working process of TMS	15
Figure 2: Graphical representation of RFC OEM routing	21
Figure 3: Graphical representation of RFC OEM routing under consideration on DB Netz	22
Figure 4: Graphical representation of RFC OEM routes on SŽDC network	23
Figure 5: Graphical representation of RFC OEM routes on ÖBB network	24
Figure 6: Graphical representation of RFC OEM routes on ŽSR network	25
Figure 7: Graphical representation of RFC OEM routes on MÁV and GYSEV network	27
Figure 8: Graphical representation of RFC OEM routes on CFR network	28
Figure 9: Graphical representation of RFC OEM routes on NRIC network	29
Figure 10: Graphical representation of RFC OEM routes on OSE network	30
Figure 11: Graphical representation of TEN-T corridor Orient/East-Mediterranean routing	48
Figure 12: Comparison of challenges of rail freight to road transport	95
Figure 13: Graphical representation of railway border crossings	101
Figure 14: Graphical representation of Marmaray project	102
Figure 15: Graphical representation of logistics centres and ports in northwest Turkey	102
Figure 16: Graphical representation of summarized results of marketing survey	120
Figure 17: Graphical representation of main conclusions of Marketing survey	121
Figure 18: Theoretical graphical representation of SWOT analysis	123
Figure 19: Components of "Last- mile infrastructure"	128
Figure 20: Current version of Last mile portal	129
Figure 21: Map Balanced Score Card of corridor OEM	132

List of graphs:

Graph 1: GDP development and prognosis in the Federal Republic of Germany	50
Graph 2: Comparison of modal split in freight transport in the Federal Republic of Germany	54
Graph 3: Comparison of modal split in passenger transport in the Federal Republic of Germany.	54
Graph 4: GDP development and prognosis in the Czech Republic	57
Graph 5: Comparison of modal split in freight traffic in the Czech Republic	58
Graph 6: Comparison of modal split in passenger traffic in the Czech Republic	59
Graph 7: GDP Development and prognosis in Austria	62
Graph 8: Comparison of modal split in freight transport in Austria	63
Graph 9: Comparison of modal split in passenger transport in Austria	64
Graph 10: GDP development and prognosis in the Slovak Republic	64
Graph 11: Comparison of modal split in freight transport in the Slovak Republic	66
Graph 12: Comparison of modal split in passenger trasnport in the Slovak Republic	66
Graph 13: GDP development and prognosis in Hungary	70
Graph 14: Comparison of modal split in freight transport in Hungary	71
Graph 15: Comparison of modal split in passenger transport in Hungary	72
Graph 16: GDP development and prognosis in Romania	74
Graph 17: Comparison of modal split in freight traffic in Romania	76
Graph 18: Comparison of modal split in passenger traffic in Romania	77
Graph 19: GDP Development and prognosis in Bulgaria	79
Graph 20: Comparison of modal split in freight transport in Bulgaria	81
Graph 21: Comparison of modal split in passenger transport in Bulgaria	81
Graph 22: GDP development and prognosis in Greece	82
Graph 23: Comparison of modal split in freight traffic in Greece	84
Graph 24: Comparison of modal split in passenger traffic in Greece	84

INTRODUCTION

Rail freight transport is an important and irreplaceable part of the market of freight transport services. Rail freight transport takes a share in human society development that harmonizes the economic and social progress with full preservation of the environment. The impact of exogenous and endogenous factors caused that the rail freight transport has lost a significant market share which led to a decrease in rail sector effectiveness and a shift of transport performances to other more environmentally demanding modes of transport. Shift of transport performances leads to an increase in negative external costs, higher state subsidies to transport infrastructure and thus creates a higher demand on the state budget. This unfavourable situation had to be solved through appropriate measures, e.g. by establishing the European rail freight corridors. The establishment of the European freight corridors should bring, in particular, better, more complete, more reliable and less expensive services to railway undertakings. Such services of single European railway infrastructure contribute to increased acquisition activity of railway undertakings providing freight services. Increased acquisition activity, reliable, safe and cost competitive service lead to a shift of transport performances from more environmentally demanding transport modes to rail. The shift of transport performances to rail freight transport leads to a decrease in social costs generated by transport.

It is necessary to evaluate the quality and effectiveness of the European rail freight corridors at defined intervals and subsequently, based on the evaluation, to take measures for increasing the competitiveness and growth of overall effectiveness of the corridor. The measures are based on the previously approved development strategy of the particular corridor. The strategy is developed based on acquisition, processing and subsequent evaluation of technical, technological, transport and economic indicators obtained from various sources. Since this is a large area of information, it is necessary to elaborate a comprehensive scientific study separately for each corridor.

Based on the above mentioned facts, it is necessary to elaborate a Transport Market Study (TMS) also for RFC OEM which will evaluate the objective situation, the perspectives and the effectiveness of the corridor. At the same time, the strategic measures leading to a higher effectiveness of RFC OEM will be derived based on the evaluations of individual parts of the study.

1 OBJECTIVE OF TRANSPORT MARKET STUDY

The gradual decrease in rail freight performances and the associated shift of transport performances to less environmentally-friendly modes of transport led to a number of measures for promoting the growth of rail freight performances.

The establishment of European rail freight corridors at EU level should contribute to the shift of transport performances from more environmentally demanding transport modes to less environmentally demanding rail freight transport. These corridors should ensure, in particular, equal, non-discriminatory and easier conditions of access to the whole railway infrastructure of individual Member States for all railway undertakings. Harmonisation and synergy between particular railway infrastructures are to ensure, first of all, better quality, more available, comprehensive and cost effective services for railway undertakings. Cost-effective services motivate railway undertakings to higher acquisition activity, thus more suitable modal split will be ensured for the whole society.

1.1 Aspects of establishing European rail freight corridor RFC OEM

The chapter is aimed at the interpretation of basic expected objectives and effects of establishing the seventh European rail freight corridor. At the same time, the chapter provides an interpretation of basic legislation governing the establishment and operation of the seventh European rail freight corridor.

1.2 Theoretical and expected objectives of RFC OEM establishment

Above all, the improved competitiveness of rail freight in the EU is to be achieved by establishing the European rail freight corridors. The main expected objectives of establishing the corridors, defined by the European Commission (hereinafter referred to as EC), can be summarized as follows:

- 1. Strengthening competitiveness of rail freight transport compared with other modes of transport.
- 2. Harmonization and synergy between national rail systems.
- 3. Coordination of investment in qualitative railway infrastructure with possibility of financial support from EU funds.
- 4. Strengthening cooperation in allocation of railway infrastructure capacity to international freight trains between single infrastructure managers.
- Conformity with existing objectives of other specific corridors, e.g. TEN-T, ERTMS, Rail Net Europe.

RFC7 Orient/East-Med

TRASPORT MARKET STUDY RAIL FREIGHT CORRIDOR ORIENT/ EAST- MED

The establishment of RFC OEM is to lead to the fulfilment of the expected partial objectives that can be summarized in the following points:

- 1. Growth of transit rail freight performances.
- 2. Growth of international rail freight performances (import, export).
- 3. Better services of infrastructure managers provided to railway undertakings.
- 4. Better services provided by railway undertakings to carriers.
- 5. Shift of transport performances from environmentally demanding modes to rail freight.
- 6. Increase in reliability and decrease in transit time.
- 7. Cost reduction for railway undertakings.
- 8. Growth of socio-economic effectiveness of the railway system.

In addition to the expected partial objectives mentioned above, the establishment of RFC OEM also brings particular benefits to railway undertakings and terminals:

- overview of infrastructure capacity included in the corridor, including the capacity provided with priority,
- attending to an application for allocation of capacity on the whole route within the corridor in one place,
- better services in terms of transit time, regularity, reliability and information,
- strengthening customer approach,
- coordination of investment projects in railway infrastructure between railway administrations,
- coordination of possessions on the corridor, reduction of operating restrictions,
- harmonization of infrastructure technical and transport parameters,
- improving infrastructure included in the corridor, including connecting lines to terminals and support of eliminating bottlenecks,
- chance to strengthen priority rules in operative traffic control for freight trains carrying out transport performances on the corridor.

The defined expected objectives and benefits of the RFC establishment are, in particular, to increase the competitiveness of rail freight services compared with other modes of freight transport, especially road goods transport. The benefits are better, more reliable and more available rail freight services and the reduction of operating and technological costs of railway undertakings.

2 LEGISLATIVE ASPECTS OF RFC OEM ESTABLISHMENT

Rail Freight Corridor RFC OEM is being established based on Regulation No 913/2010 of the European Parliament and the Council of 22 September 2010 concerning a European rail network for competitive freight transport and it was put into operation on 10 November 2013 in accordance with the deadline set out in this Regulation. The Management Board must update the data in the Transport Market Study (TMS) on a regular basis in accordance with Article 9 of Regulation (EU) No 913/2010. Regulation (EU) No 913/2010 was amended by adoption of Regulation No 1316/2013 of the European Parliament and the Council of 11 December 2013 establishing the Connecting Europe Facility.

When updating TMS of RFC OEM, according to Regulation (EU) No 1316/2013 of the European Parliament and the Council of 11 December 2013 establishing the Connecting Europe Facility, the changes of principal and diversionary lines as well as the following extensions must be taken into account in accordance with Annex II of this Regulation.

- extension to Germany (Wilhelmshaven/Bremerhaven/Hamburg/Rostock),
- extension in Bulgaria (Burgas/ Svilengrad),
- extension in Greece (Patras),

Further, with a view to the geographical orientation of the corridor, two further aspects should be taken into account in the TMS update:

- the transport market in Turkey, with particular focus on international traffic between Turkey and Central Europe,
- existing and potential future transport flows from and to the Caucasus region, entering/leaving the RFC OEM routes via the Bulgarian and Romanian Black Sea ports of Burgas, Varna and Constanta.

In both cases the Iron Silk Road project should be taken into account in these contexts.

Regulation (EU) No 913/2010 continues Council Directive 91/440/EEC of 29 June 1991 on the development of the Community's railways and Directive 2001/14/EC of the European Parliament and the Council of 26 February 2001 on the allocation of railway infrastructure capacity and levying of charges for the use of railway infrastructure.

 objective of Council Directive 91/440/EEC is to achieve the equitable and nondiscriminatory access to rail infrastructure and support of rail market in Europe through economic competition,

- Directive 2001/14/EC concerning access to network and charges provides that the infrastructure manager has to publish a network statement containing information on the (technical) type and the restrictions of the network, the conditions of access to the network and the rules for capacity allocation. Directive 2001/14/EC is part of the first railway package.

The following enactment was the second railway package with measures to revitalize railways by rapidly creating an integrated European railway area. The measures are based on the guidelines set out in the White Paper on Transport and are aimed at higher safety, interoperability and opening of the rail freight market to the private sector. These five measures are concerned with:

- developing a common approach to rail safety,
- promoting the fundamental principles of interoperability,
- establishing an effective managing body (European Railway Agency, Regulation (EC) No 881/2004 repealed and replaced by the European Union Agency for Railways according to Regulation (EU) 2016/769 of the European Parliament and the Council of 11 May 2016 on the European Union Agency for Railways,
- extension and acceleration of the opening of the rail freight market,
- membership in the Intergovernmental Organization for International Carriage by Rail (OTIF).

Furthermore, in its policy to encourage rail transport the European Commission has adopted an approach based on corridors in the context of a trans-European transport network (TEN-T). This allowed the allocation of subsidies to railway development projects through TEN-T funds.

In order to establish and support the European railway network as regards freight transport, some technical and operational initiatives have been launched. These are, for example:

 the development of interoperability through the technical specifications for interoperability (TSIs) in particular relating to Traffic Operation and Management (OPE TSI) and TSI relating to Telematic Applications for Freight Services (TAF TSI). Of course, further TSIs such as those relating to infrastructure, vehicles, etc. are also of vital importance for the improvement of interoperability.

- the activities of RNE, an organization connecting 34 infrastructure managers and allocation bodies across Europe. The main objective is to enable easy and quick access to information regarding the European railway infrastructure regarding international railway traffic and to improve the quality and effectiveness of cross-border rail transport entailing the development of harmonised international business processes.

3 METODOLOGY OF WORK AND METHODS OF INVESTIGATION

The chapter contains a description of the working process of TMS elaboration. At the same time, the chapter describes the ways of gathering the materials, data and information necessary for elaborating the partial objectives of TMS. Based on the specified working process, used methods necessary for elaborating the particular partial objectives of TMS are listed in the chapter.

3.1 Working process of TMS elaboration

For the complete elaboration of TMS, based on determining the main objectives, the methodological working process, shown in Figure 1, was chosen.

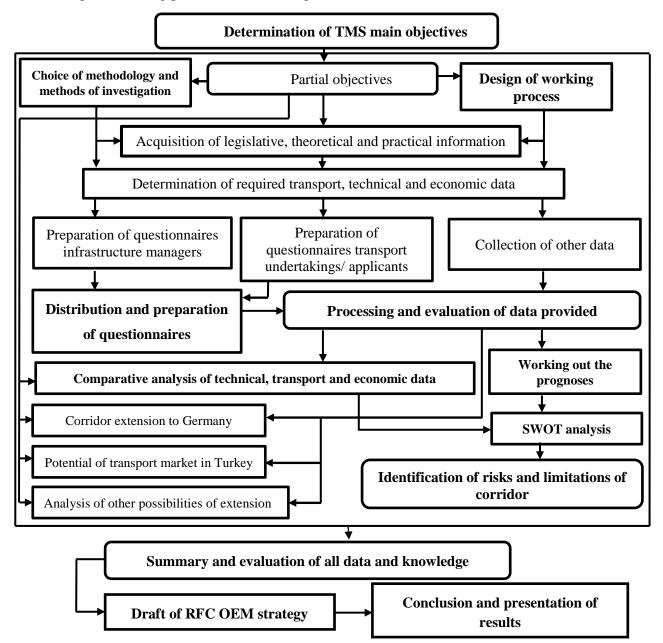


Figure 1: Graphic representation of methodical working process of TMS

3.2 Material used in TMS elaboration

The complete elaboration of all TMS tasks requires the analysis and processing of various technical, transport, capacity and economic indicators. As it is a wide range of statistical and analytical information, it is necessary to start from several sources. Therefore, in elaborating the TMS, the following sources of information were used:

- EU legislative regulations, modifications and standards,
- annual reports of infrastructure managers of corridor member states,
- network statements of infrastructure managers of corridor member states,
- traffic and transport performances provided by corridor infrastructure managers,
- traffic and transport performances from statistical offices of corridor member states, including Germany as new member of RFC OEM,
- data of Turkey statistical offices,
- data of Eurostat,
- data of International Monetary Fund,
- data of Organization for Economic Cooperation and Development,
- data of World Bank,
- economic indicators provided by statistical offices of corridor member states,
- reports and studies of Core Network Corridors,
- other available economic, traffic and transport information necessary for study elaboration,
- data from questionnaires sent to infrastructure managers,
- data from questionnaires sent to railway undertakings,
- Manual Update of the Handbook on External Costs of Transport"(final report for the European Commission 2014),
- theoretical aspects of study elaboration obtained from available scientific literature,
- articles, reports, publications dealing with problems of RFC corridors,
- previous TMS RFC OEM.

The statistical and analytical data required for elaborating the individual parts of TMS, with which it will be possible to determine the strategic objectives of European Rail Freight Corridor OEM, are shown in Table 1.

Technical parameters	Standard length of train, maximum length of train, class of line, signalling equipment, electrification system, loading gauge, average speed of train, speed limits, slopes/ gradients
Transport performances	Development of transport performances on corridor lines Development of transport performances on all lines of member state
Macroeconomic indicators	GDP development and prognosis in member states Share of individual economic sectors in GDP in %
Microeconomic indicators	Level of infrastructure charges for type trains Transit time
Modal Split	Development of modal split between individual modes of transport
International transport	Transport and traffic performances in international transport
Capacity analysis	Development of total transport capacity utilization Development of transport capacity utilization of individual corridor lines Waiting times and reasons of delays are monitored separately from this study by the Train Performance Management Working Group
Other indicators	Investment, technical and technological measures, proposal of extension of lines and terminals, etc.
Corridor indicators	Corridor benefits

Table 1: Statistical and analytical indicators monitored in TMS

3.3 Methods used in TMS elaboration

The TMS partial objectives have been worked out using the following methods:

- method of investigating written sources used for selecting appropriate literature for processing the theoretical and legislative part of TMS,
- method of scientific abstraction in examining the basic theoretical and legislative basis for introduction of the European freight corridors,
- method of information gathering and processing used for information collection and its subsequent processing,
- benchmarking in comparison of some transport and technical statistical data,
- method of analysis in processing and searching required transport and technical statistical data,
- method of comparative analysis comparison in analytical part,
- method of synthesis for summarizing information and data obtained,
- method of induction and deduction used in all parts of TMS, in creating logical judgements based on theoretical, legislative and empirical knowledge,

- brainstorming used in formulating proposals of economic measurement of implementing a proposal of new methodology of railway infrastructure charging and consultations with practitioners,
- methods of statistical analysis used in searching and processing required transport, technical and economical statistical data,
- prognostic method used in development of TMS prognostic scenarios.

4 **RFC OEM CHARACTERISTICS**

The chapter contains a description and the characteristics of the RFC OEM corridor. A part of the corridor description is a graphical representation of currently included and proposed lines. The chapter contains the technical parameters of all included principal and diversionary lines as well as the lines proposed for inclusion in the RFC OEM corridor.

4.1 RFC OEM basic structure

For the European rail freight corridors, bodies have been established which through their activities take a share in the proper functioning of the corridor. At the same time, their coordination contributes to meeting the main and partial objectives of corridor establishment and responds to the challenges of effective daily operation and the provision of the best possible solution to customer needs.

RFC OEM bodies:

- **Executive Board** representatives at the level of Ministries of transport of member states,
- Management Board at the level of infrastructure managers and where appropriate Allocation Bodies of member states,
- > Railway Advisory Group (RAG) made up of representatives of railway undertakings,
- Terminal Advisory Group (TAG) made up of owners and operators of terminals included in corridor,
- Corridor One- Stop Shop (C-OSS) simplifies and standardizes the international capacity planning process,
- Working Groups ensuring primarily marketing, infrastructure development, traffic control, information exchange, and coordination of OSS activities.

Main tasks of Executive Board:

- is responsible for defining the corridor main objectives, supervises and takes measures,
- determines the framework for infrastructure capacity allocation within the corridor,
- approves documents and plans elaborated by the Administrative Board,
- periodically reviews the corridor implementation plan,
- submits to the European Commission a report on the results of executing the implementation plan every two years starting from the corridor establishment.

Main tasks of Management Board:

- decides on its legal status, organizational structure, personnel and sources,
- decides on corridor implementation aspects in accordance with the Regulation based on mutual consent (unanimously), holds sessions several times a year, as needed,
- elaborates documents and plans defined in the Regulation,
- establishment of the Corridor One Stop Shop (C-OSS) as the only contact point for applicants,
- establishes Advisory Groups.

The Management Board monitors the performance and quality of rail freight services within the corridor and once a year publishes the results on the web site of the corridor together with the results of the satisfaction survey of corridor users. In order to ensure a non-discriminatory access to railway infrastructure and fair economic competition it cooperates with regulatory bodies of member states, at the same time it performs the task of the Appellate Body.

Main tasks of Corridor One-Stop Shop (C-OSS)

Regulation 913/2010 has introduced a new 'player' to the rail freight business. As a unique contact and coordination point, the Corridor One-Stop Shop – hereinafter: C-OSS – simplifies and standardises the process of international capacity planning, application and allocation using the common European IT tool Path Coordination System (PCS) developed by Rail Net Europe. All available path product of the corridor are registered in PCS and can be easily booked via this system. C-OSS will manage the request through the whole phase providing maximum 'care' as a single service provider acting as one IM on behalf of all involved IMs.

RFC OEM route according to Regulation of the European Parliament and Council (EU) No. 1316/ 2013 on the establishment of the connecting Europe facility:

(Germany – corridor extension along the lines to Germany ports since 2018) – Praha – Vienna / Bratislava – Budapest / – Bucharest – Constanta / – Vidin – Sofia – Thessaloniki – Athens

Current member states:

Czech Republic, Slovak Republic, Austria, Hungary, Romania, Bulgaria, Greece.

New member state:

Federal Republic of Germany – expected entry in 2018.

Date of putting RFC OEM into operation: 08.11.2013

Seat of Corridor One Stop Shop (C-OSS): Budapest

4.2 **RFC OEM graphical representation**

In this subchapter, for the sake of an overall visual presentation, principal, diversionary and for some countries connecting lines are marked on the maps of the whole railway infrastructure of individual infrastructure managers. The graphical representation of RFC OEM is shown in Figure 2.

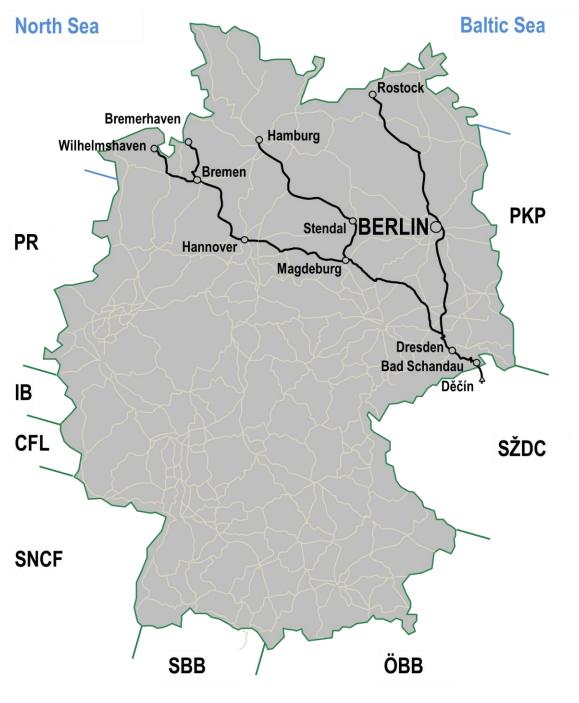
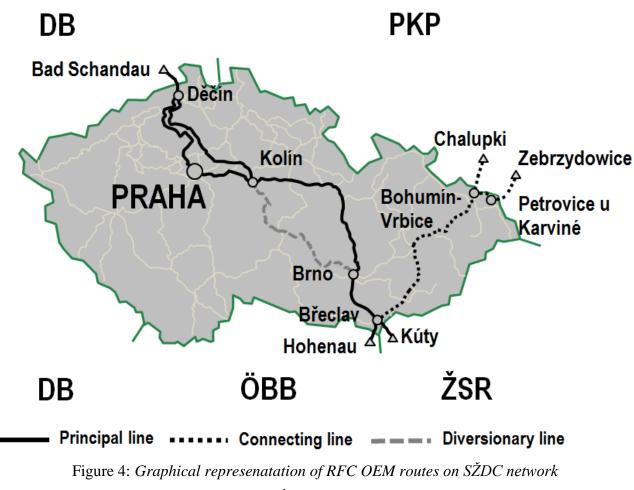


Figure 2: Graphical representation of RFC OEM routing (Source: József Ádám Balogh, C-OSS manager)

Federal Republic of Germany

On the territory of the Federal Republic of Germany, the extension of RFC OEM lines directed at Wilhelmshaven/ Bremerhaven/ Hamburg/ Rostock - Dresden- Bad Schandau - Děčín (CZ) is under consideration. Possible routing of RFC OEM in graphical form in the Federal Republic of Germany is shown in Figure 3.


Principal line Connecting line ____ Diversionary line Figure 3: Graphical representation of RFC OEM on DB Netz network (Source: József Ádám Balogh, C-OSS manager)

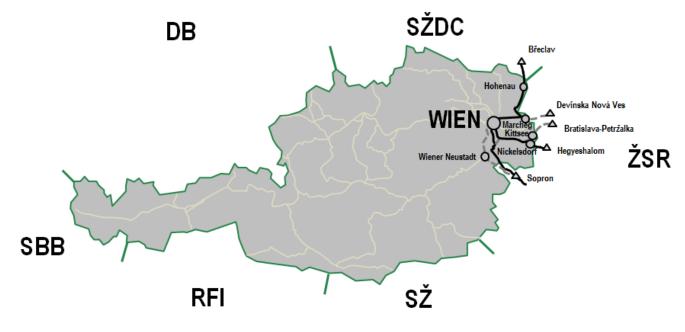
The graphical representation of the lines in Figure 3 to be included in RFC OEM confirms the connection of German ports with RFC OEM railway infrastructure. Such a connection creates more favourable conditions especially for intermodal transport.

Czech Republic

RFC OEM principal line in the Czech Republic is routed through the transport nodes Praha - Kolín - Česká Třebová - Brno/Břeclav - Hohenau (AT)/Břeclav - Lanžhot - Kúty (SK). Extension to the Federal Republic of Germany is directed at Praha/ Kolín - Ústí nad Labem - Děčín - Bad Schandau (DE). Diversionary line is routed through Kolín - Kutná Hora - Havlíčkův Brod - Křižanov, while connection to the principal line is in the railway station Brno. The connecting line from PKP infrastructure to SŽDC is routed through Břeclav - Ostrava and border crossings Bohumín-Vrbice – Chalupki (PL) and Petrovice u Karviné - Zebrydowice (PL). Graphical routing of RFC OEM lines in the Czech Republic is shown in Figure 4.

(Source: József Ádám Balogh, C-OSS manager)

RFC OEM corridor is connected to RFC 5 corridor in the cities Břeclav and Ústí nad Orlicí (the Czech Republic) while the connecting line of RFC OEM is part of RFC 5. At the same time, RFC OEM in the capital Praha and Česká Třebová is connected to RFC 9. RFC OEM corridor is also connected to RFC 8 in the sities Děčín, Praha and Kolín. Connection of several rail freight


corridors in the Czech Republic creates favourable conditions for cooperation between particular corridors as well as transport and technological effectiveness for railway undertakings.

Austria

On ÖBB network, RFC OEM principal line passes through border crossing stations Břeclav (CZ) – Hohenau to the capital of Austria – Vienna and continues to Hungary through the border crossing Nickelsdorf - Hegyeshalom (HU). Diversionary lines are redirected from the principal line in the railway station Gänserndorf to the border crossing Marchegg – Devínska Nová Ves (SK) and from the railway station Parndorf to the border crossing Kittsee - Bratislava Petržalka (SK).

Another principal line is the line from Vienna via Ebenfurth to Sopron (HU). As mentioned in the section on Hungary, in April 2017, negotiations took place on the change of state of the Vienna-Ebenfurth-Sopron line from a diversionary line to a principal line. From Ebenfurt to Vienna, The Potterdorfer (Ebenfurth-Wampersdorf - Vienna Inzersdorf Terminal - Wien Zentralverschiebenahnhof).

Another alternative route is from Vienna via Wiener Neustadt to Sopron. At the same time, RFC OEM in Austria (in Vienna) is connected to RFC 5. The graphical routing of RFC OEM lines in Austria is shown in Figure 5.

— Principal line … Connecting line — Diversionary line
Figure 5: Graphical representation of RFC OEM routes on ÖBB network
(Source: József Ádám Balogh, C-OSS manager)

Slovak Republic

The principal line on $\check{Z}SR$ network runs from the Czech Republic (Lanžhot (CZ) – Kúty) to Hungary through Bratislava in three branches. This includes the following lines:

- Bratislava Rusovce Rajka (HU),
- Bratislava Nové Zámky Komárno Komárom (HU),
- Bratislava Nové Zámky Štúrovo Szob (HU).

The first diversionary line included in RFC OEM on ŽSR network is routed Lanžhot (CZ) - Kúty - Trnava towards Bratislava and Galanta with a connection to the principal line. Another diversionary line is the connection of the border stations to the principal line. This includes the border crossings Marchegg (AT) – Devínska Nová Ves and Kittsee (AT) - Bratislava - Petržalka. The line Bratislava – Komárno through Dunajská Streda is classified as a connecting line on ŽSR network. At the same time, RFC OEM in the Slovak Republic, in its capital Bratislava, is connected to RFC 5. The graphical routing of RFC OEM lines in the Slovak Republic is shown in Figure 6.

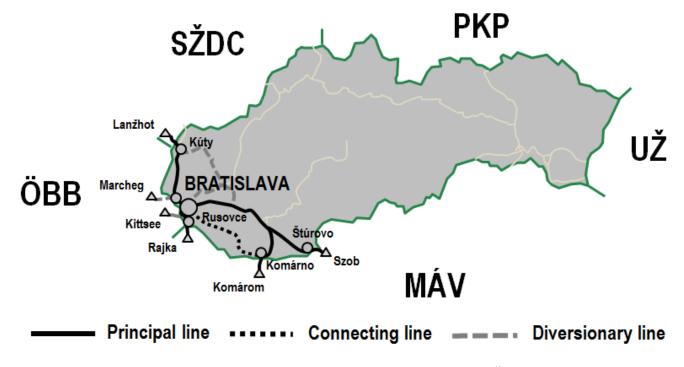


Figure 6: Graphical representation of RFC OEM routes on ŽSR network (Source: József Ádám Balogh, C-OSS manager)

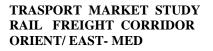
Hungary

The principal line on MÁV network is routed from ÖBB network (border crossing Nickelsdorf/ Hegyeshalom) and is connected to the second principal line in the city of Győr leading from the city of Sopron (from the Sopron terminal). This principal line from Sopron continuous on GYSEV / Raaberbahn infrastructure on Austrian territory (the border crossing: Baumgarten) to

Ebenfurth. In April 2017, negotiations took place concerning the line status change of the Sopron-Ebenfurth-Vienna route from "diversionary" classification to "principal line". The exact alignment of the route in Austrian territory is described in the section devoted to Austria. Infrastructure owned by GYSEV / Raaberbahn ends in the middle of the Neufeld an der Leitha bridge (operating up to Ebenfurth), from here further up towards Vienna, ÖBB is the competent Infrastructure Manager.

Routing of principal line from the territory of the Slovak Republic:

- Rusovce (SR) Rajka Hegyeshalom Győr Komárom- Budapest,
- Komárno (SK) Komárom- Budapest,
- Štúrovo- Szob Vác Budapest.


The Rajka – Hegyeshalom - Győr infrastructure section is managed by GYSEV, following that, MÁV is the competent infrastructure manager towards Lőkösháza.

The subsequent routing of the principal line is in continuation Budapest - /Újszász -/Cegléd-Szolnok - Lőkösháza - Curtici (CFR). Connection of the line from ÖBB network to the border crossing station Sopron then continues as principal line in the direction of Győr - Komárom -Budapest.

Diversionary lines included in RFC OEM on MÁV railway network are:

- Vác Újszász,
- Budapest- Cegléd- Szolnok,
- Szajol Biharkeresztes Oradea (CFR).

RFC OEM is simultaneously connected to RFC 6 in the Hungarian capital Budapest. The graphical routing of RFC OEM routes in Hungary is shown in Figure 7, where GYSEV's rail lines are coloured in yellow. The remaining tracks are managed by MÁV.

 Principal line
 Connecting line
 Diversionary line

 Figure 7: Graphical representation of RFC OEM routes on MÁV and GYSEV network
 (Source: József Ádám Balogh, C-OSS manager)

Romania

The principal line from Hungary through the border crossing Lőkösháza (MÁV) - Curtici continues to the station Arad and then divides into two branches:

- Arad Simeria Coslariu Brasov Bucharest Constanta,
- Arad Orsova Filiasi Craiova Calafat Vidin (NRIC).

Connection of these two branches is provided by the routes Simeria - Filiasi and Craiova - Videle - Bucharest. The border crossing lying on the diversionary line Giurgiu - Ruse (NRIC) is connected from the diversionary line through Videle railway station and from the principal line through Bucharest railway station. The diversionary line from MÁV network from the border point Biharkeresztes (MÁV) - Oradea connects to the principal line in Coslariu railway station. The graphical routing of RFC OEM routes in Romania is shown in Figure 8.

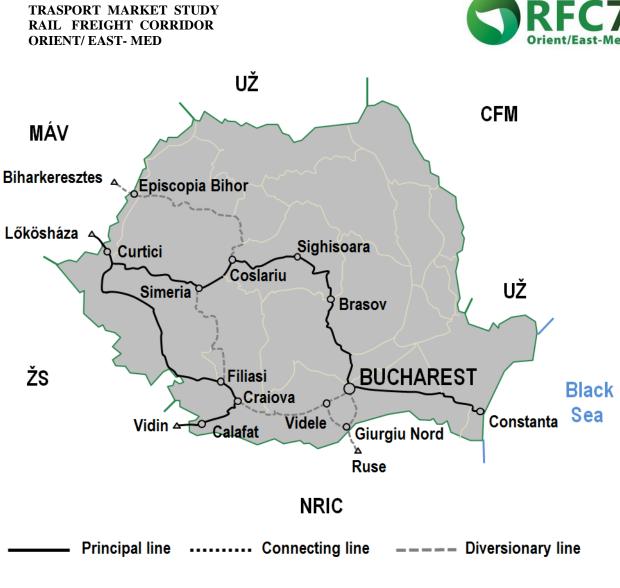


Figure 8: Graphical representation of RFC OEM routes on CFR network (Source: József Ádám Balogh, C-OSS manager)

Republic of Bulgaria

The principal route of OEM corridor on the territory of Bulgaria passes through its capital Sofia from Romania to Greece in the direction: Golenti (RO) - Vidín - Mezdra - Sofia - Kulata - Promachonas (GR). Following the meeting of the Administrative Board on June 2 2016, the originally diversionary line was reclassified to the principal line in the direction Sofia - Plovdiv - Svilengrad - Ormenio (GR). The diversionary line is led through the border crossing Giurgiu (CFR) - Ruse - Karnobat - /Burgas and in continuation Karnobat and connection to the principal line in three branches in Simeonovgrad, Dimitrovgrad and Plovdiv railway stations. The connection of RFC OEM withTurkey is possible through Svilengrad (BG) railway station and Kapikule in the Turkish border crossing station and then to the Turkish railway network. The graphical routing of RFC OEM routes in the Republic of Bulgaria is shown in Figure 9.

DE - CZ - AT - SK - HU - RO - BG - EL

CFR

Figure 9: Graphical representation of RFC OEM routes on NRIC network (Source: József Ádám Balogh, C-OSS manager)

Hellenic Republic (Greece)

The principal line on the territory of the Hellenic Republic starts off the border crossing Kulata (NRIC) - Promachonas and continues to the capital of the Hellenic Republic – Athens with a connecting line to Piraeus. Another connecting line in continuation from the principal line is in Larissa railway station to Volos railway station. The diversionary lines are the continuation of the principal line in the direction Svilengrad (NRIC) - Ormenio – Alexandropolis – Serres.

The connection of RFC OEM with Turkey is possible through Pythion (EL) railway station and Demirköprüin Turkish border crossing station and then to the Turkish railway network. The graphical routing of RFC OEM routes in Greece is shown in Figure 10.

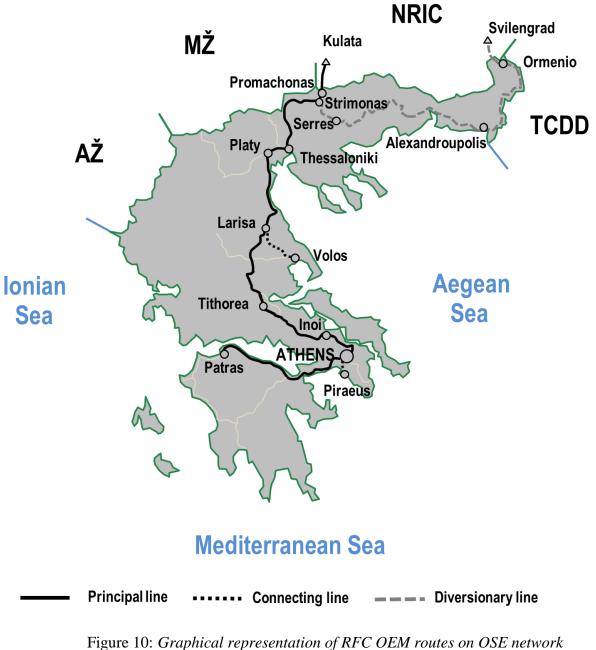
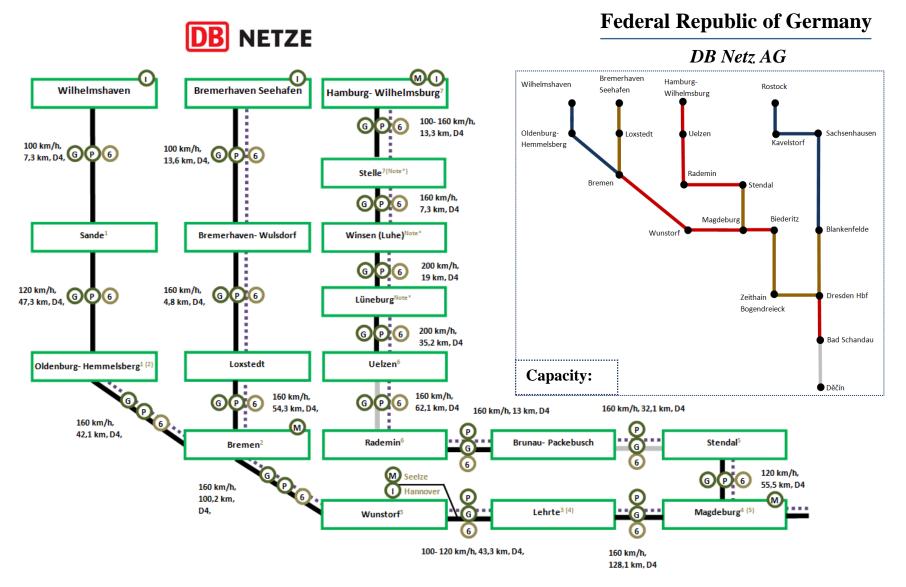


Figure 10: Graphical representation of RFC OEM routes on OSE network (Source: József Ádám Balogh, C-OSS manager)

4.3 Technical parameters of RFC OEM

For a rapid and graphic-visual representation of the technical parameters of the lines included in RFC OEM, the particular railway lines and terminals in the given countries are shown using the following signs:

Description of stations:						
Lanžhot		Border station of neighbouring country on the principal line				
Marchegg		Border station of neighbouring country on the diversionary line				
Kúty		Station lying on a principal line (selected station)				
Trnava		Station lying on a diversionary line (selected station)				
Dunajská Streda		Station lying on a connecting line (selected station)				
Type of line:			D	escription	of capacity utilization schemes:	
	Corri	dor double-track	line		Information not provided	
	Corri	dor single-track l	ine 🗖		Track capacity use 49 %	
	••• 3 KV	DC	-		Track capacity use 50% - 89 %	
•••••	•••• 15 K	V AC (16 2/3 Hz) 🗕		Track capacity use above 90 %	
	••• 25 K	V AC (50 Hz)		/	Railway station/ Border station	
Intermodal freight mode:						
1 P/C 45/375		M		Marsh	Marshalling yard	
2 P/C 57/381			I Inte G GSN		rmodal transport terminal	
3 P/C 70/400					1- R	
4 P/	P/C 78/402		Ē	ETCS		
	PC 80/402		Ĺ	LS cap signalling		
6 PC	PC 80/410		P	PZB/LZB*		
5 PC 6 PC 7 P// 8 P// 9 P//	7 P/C 59/389		*Note: P- <i>LZB</i> (<i>Linienzugbeeinflussung</i>)			
8 P/C 59/400			PZB (Punktförmige Zugbeeinflussung)			
9 P/	C 55/385		PZB/LZB- Automatic train control used mainly on			
	P/C 45/360		German and Austrian railway lines			


Description of technical parameters of line:

120 km/h, 10 km, D4, 700 m Ma

Maximum speed, distance, axle load, maximum length of train

Technical data of the lines are listed in Appendix L: Technical parameters of RFC OEM infrastructure in .xls format.

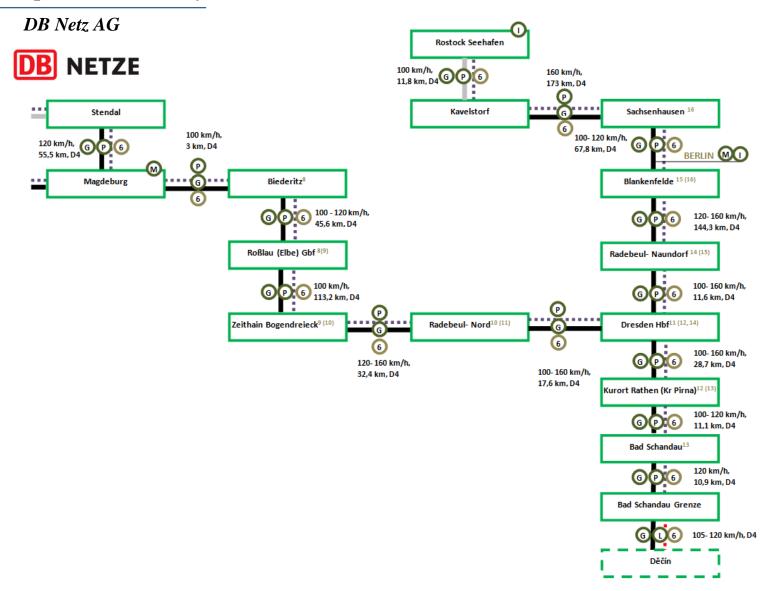
The scheme continues on the page 34.

Note:

Different technical parameters on line sections:

- ¹Oldenburg-Hemmelsberg Oldenburg (Oldb) Hbf 2,3 km, 2 tracks, D4, 120 km/h, P/C 80/410, AC 15 kV 16,7 Hz
- Ofenerdiek Oldenburg (Oldb) Hbf 5,6 km, 2 tracks, D4, 100 km/h, P/C 80/410,
- ²Bremen- Neustadt- Bremen Hbf- 2,6 km, 2 tracks, D4, **120 km/h**, P/C 80/410, AC 15 kV 16,7 Hz
- ³ Wunstorf Seelze Mitte- 11,5 km, 2 tracks, D4, **120 km/h**, P/C 80/410, AC 15 kV 16,7 Hz
- ⁴ Magdeburg-Sudenburg Magdeburg Hbf 2,9 km, 2 tracks, D4, **120 km**, P/C 80/410, AC 15 kV 16,7 Hz
- Braunschweig Hbf- Helmstedt 35,5 km, 2 tracks, D4, 120 km/h, P/C 80/410, AC 15 kV 16,7 Hz
- ⁵ Magdeburg-Rothensee Brücke 2,4 km, 2 tracks, D4, **50 km/h**, P/C 80/410, AC 15 kV 16,7 Hz
- Glindenberg Magdeburg-Rothensee 3,4 km, 2 tracks, D4, 100 km/h, P/C 80/410, AC 15 kV 16,7 Hz
- ⁶ Uelzen Veerβen 3 km, 2 tracks, D4, **160 km/h**, P/C 80/410, AC 15 kV 16,7 Hz,
- ⁷ Maschen Rbf Stelle 3,7 km, 2 tracks, D4, **100 km/h**, P/C 80/410, AC 15 kV 16,7 Hz,
- Hamburg- Harburg Maschen Rbf 4,8 km, 2 tracks, D4, 160 km/h, P/C 80/410, AC 15 kV 16,7 Hz,
- Hamburg-Wilhelmsburg Hamburg-Harburg 4,8 km, 2 tracks, D4, 120 km/h, P/C 80/410, AC 15 kV 16,7 Hz,

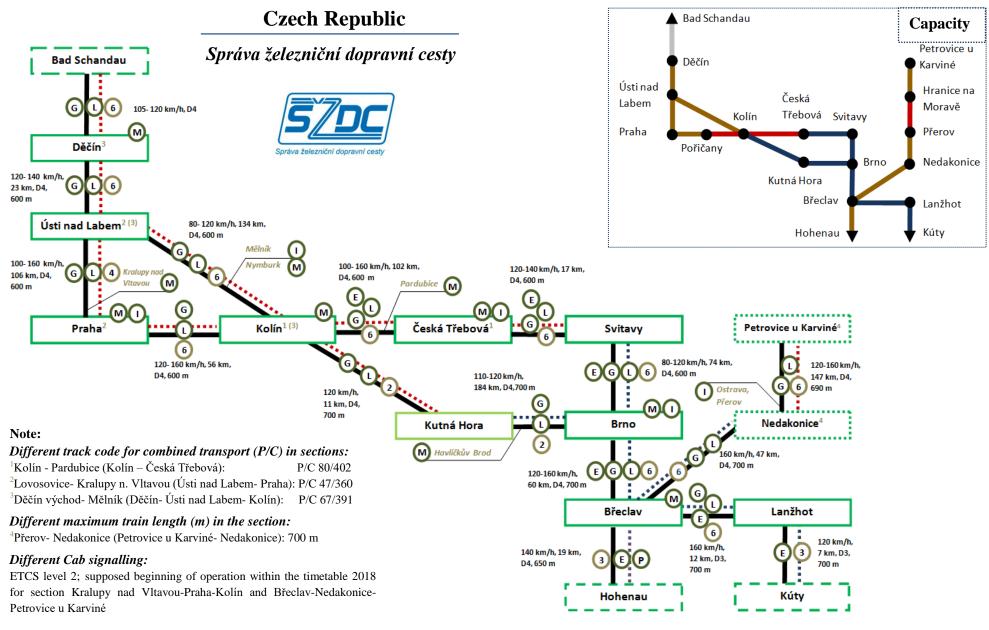
Note* *Information tracks*:


Stelle – Winsen (Luhe) - Lüneburg: 3 tracks (2 lines)

PZB/LZB- There is only PZB system without LZB on the lines included in RFC OEM with the exception of the Uelzen- Winsen (Luhe) where LZB L 72 CE (TgrV 0 und 1) is located and Winsen (Luhe)- Stelle where LZB L 72 is located. (Line section Hamburg-Wilhelmsburg- Uelzen)

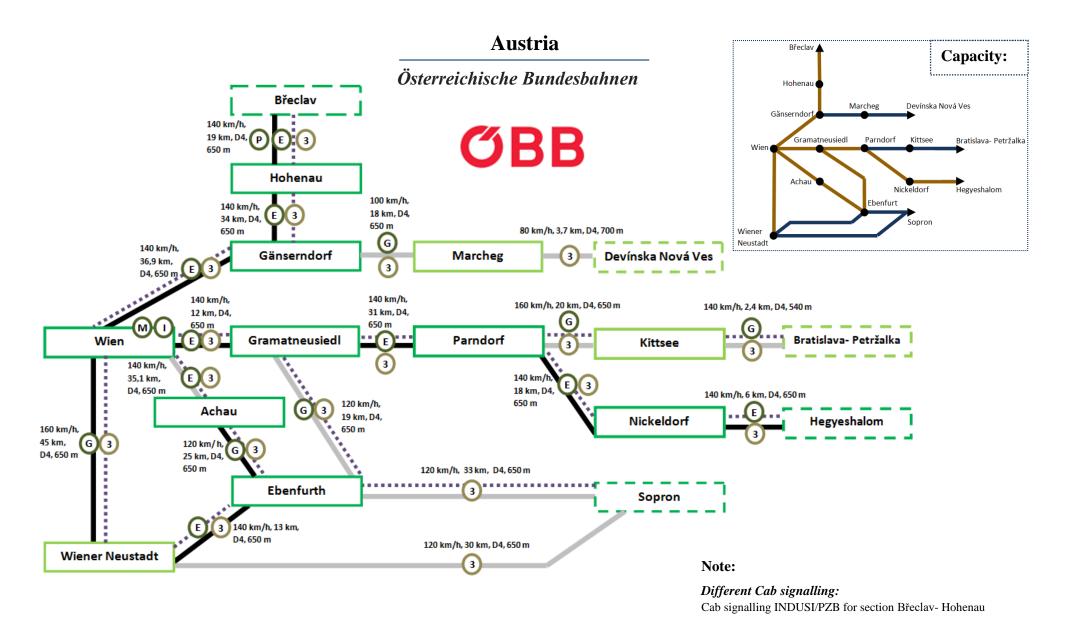
For the German corridor network a train length up to 740m is basically possible, due to restrictions in timetabling and operational situations the actually possible train length can be influenced.

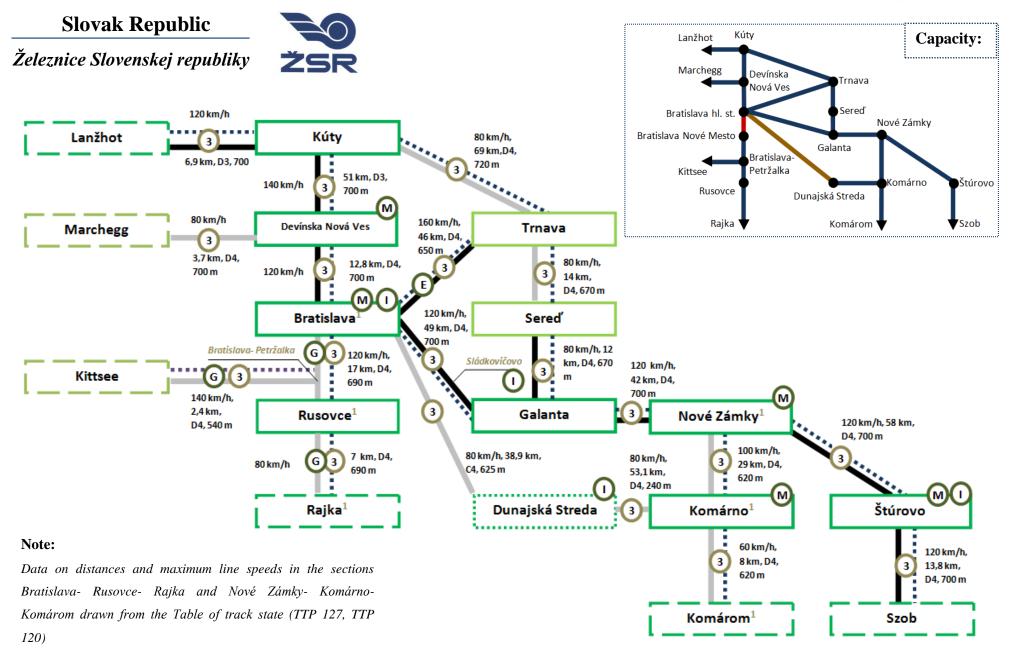
Federal Republic of Germany


Note:

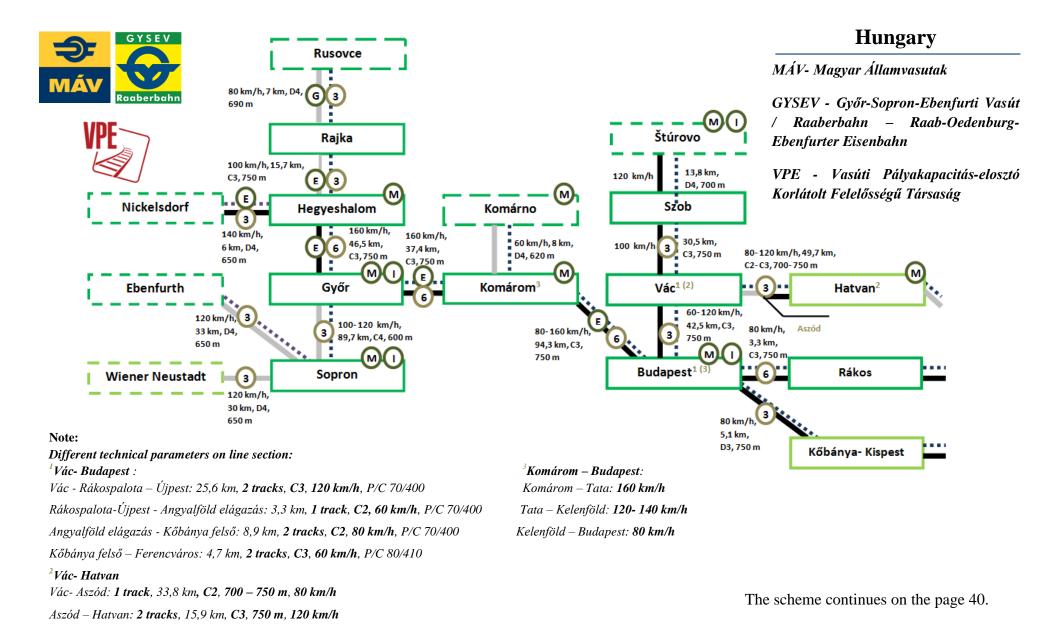
Different technical parameters on line sections:

- ⁸ Güterglück Trebnitz Streckenwechsel 6410/6411 3,4 km, 2 tracks, D4, **100 km/h**, P/C 80/410, AC 15 kV 16,7 Hz,
- ⁹ Röderau Zeithain Bogendreieck 1,1 km, 1 track, D4, 100 km/h, P/C 80/410, AC 15 kV 16,7 Hz,
- ¹⁰ Weißig (b Großenhain) Leckwitz- 7,3 km, 2 tracks, D4, **160 km/h**, P/C 80/410, AC 15 kV 16,7 Hz,
- Coswig (bei Dresden) Radebeul- Naundorf (Abzw) 2 km, 2 tracks, D4, 100 km/h, P/C 80/410, AC 15 kV 16,7 Hz,
- Coswig (bei Dresden) Radebeul Nord- 2,8 km, 1 track, D4, 160 km/h, P/C 80/410, AC 15 kV 16,7 Hz
- ¹¹ Dresden Neustadt- Dresden- Pieschen (Abzw)- 3,1 km, 2 tracks, D4, **120 km/h**, P/C 80/410, AC 15 kV 16,7 Hz,
- Dresden Neustadt- Dresden Hbf- 3,5 km, 2 tracks, D4, 100 km/h, P/C 80/410, AC 15 kV 16,7 Hz,
- ¹² Obervogelgesang (Kr Pirna) Kurort Rathen (Kr Pirna) 6,8 km, 2 tracks, D4, **100 km/h**, P/C 80/410, AC 15 kV 16,7 Hz,
- ¹³ Kurort Rathen (Kr Pirna) Bad Schandau Königstein (Sächs Schweiz) Üst 2,7 km, 2 tracks, D4, 100 km/h, P/C 80/410, AC 15 kV 16,7 Hz,
- ¹⁴ Dresden- Kremnitz- Dresden Stetzsch 1,4 km, 2 tracks, D4, **50 km/h**, P/C 80/410, AC 15 kV 16,7 Hz,
- ¹⁵ Radebeul Abzw Az Radebeul-Naundorf (Abzw) 1,1 km, 2 tracks, D4, **120 km/h**, P/C 80/410, AC 15 kV 16,7 Hz,
- Baruth (Mark)- Golßen (Niederlausitz) 10,4 km, 2 tracks, D4, 120 km/h, P/C 80/410, AC 15 kV 16,7 Hz,
- Dabendorf- Zossen 2,1km, 2 tracks, D4, 120 km/h, AC 15 kV 16,7 Hz,
- ¹⁶ Glasower Damm Ost Grüna Blankenfelde (Kr Teltow-Fläming) 2,6 km, 2 tracks, D4, 100 km/h, P/C 80/410, 15 kV 16,7 Hz
- Biesdorfer Kreuz Süd Grünauer Kreuz Süd 9,6 km, 2 tracks, D4, 100 km/h, P/C 80/410, 15 kV 16,7 Hz
- Hohen Neuendorf Strw 6088/6090/6092 Schönfließ West 5,6 km, 1 track, D4, 100 km/h, P/C 80/410, 15 kV 16,7 Hz

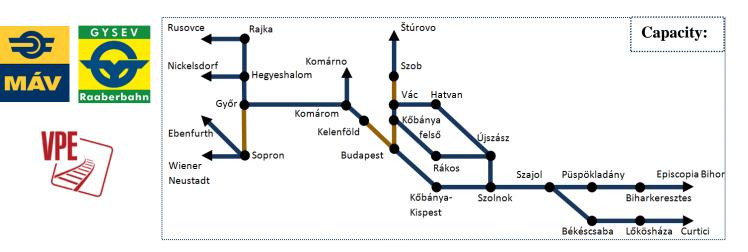

For the German corridor network a train length up to 740m is basically possible, due to restrictions in timetabling and operational situations the actually possible train length can be influenced.

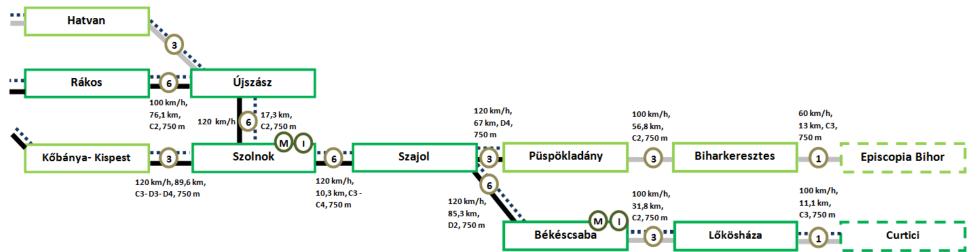


Cab signalling INDUSI/PZB for section Břeclav- Hohenau

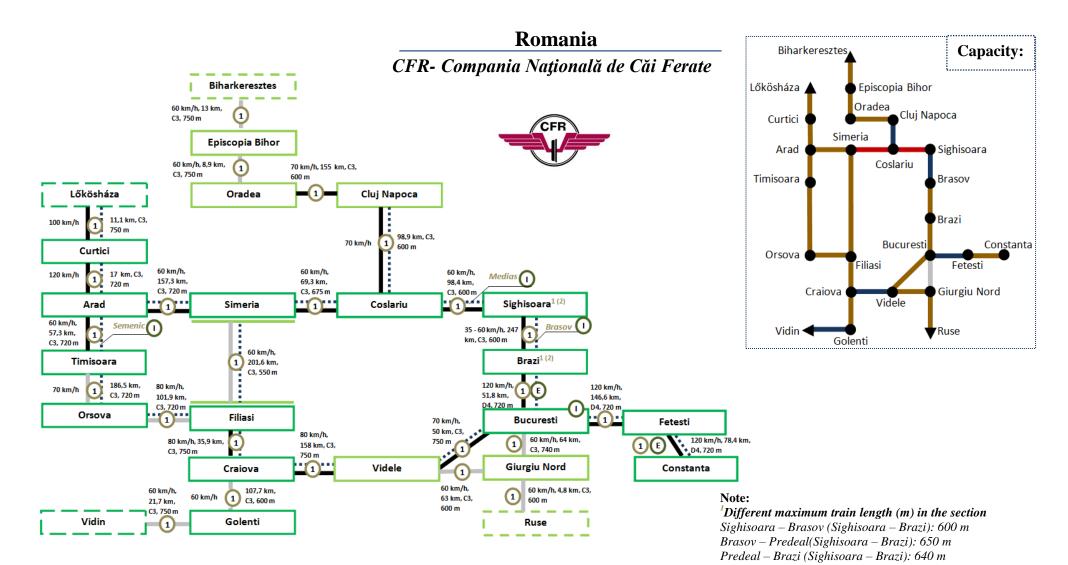


2017

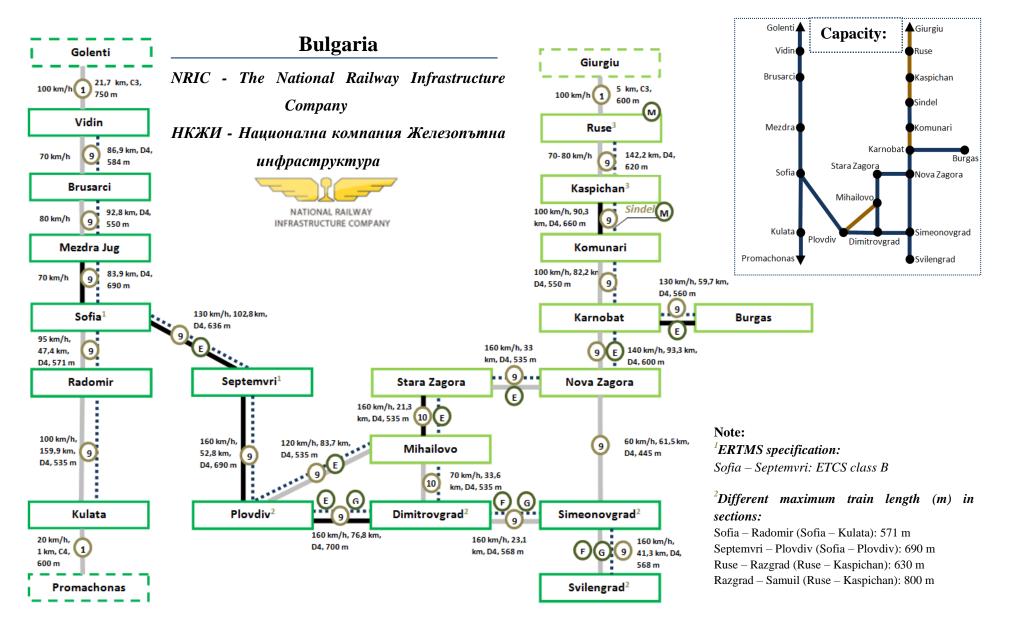


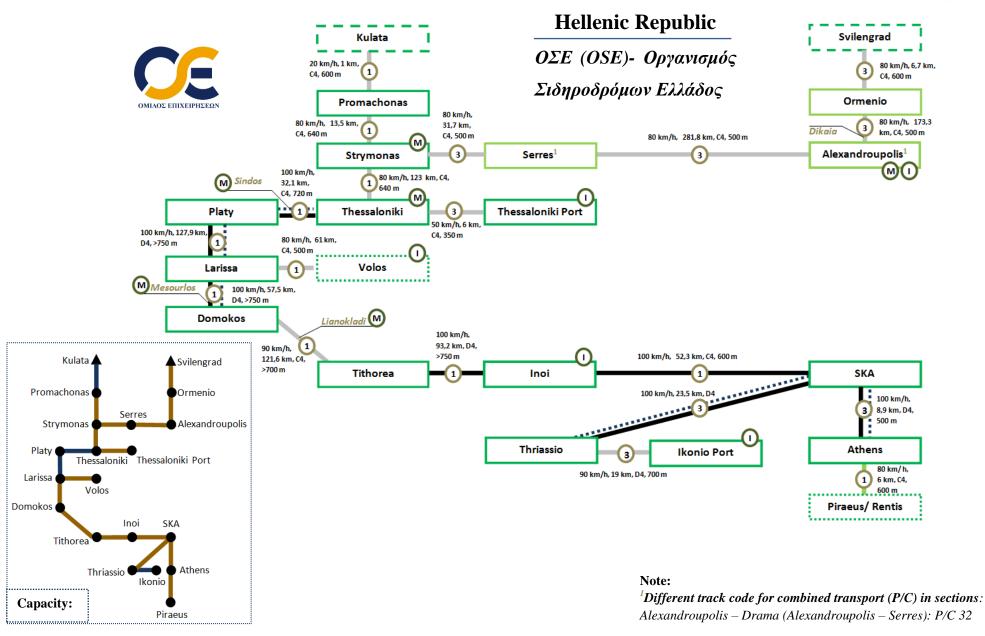

Hungary

MÁV- Magyar Államvasutak


GYSEV - Győr-Sopron-Ebenfurti Vasút / Raaberbahn – Raab-Oedenburg-Ebenfurter Eisenbahn

VPE - Vasúti Pályakapacitás-elosztó Korlátolt Felelősségű Társaság




²Different maximum speed (km/h) in the section: Sighisoara – Brasov (Sighisoara – Brazi): 60 km/h Brasov – Predeal (Sighisoara – Brazi): 35 km/h

Predeal – Brazi (Sighisoara – Brazi: 60 km

4.4 Analysis of capacity and bottlenecks

The values of utilized capacity of the lines included in the rail freight corridors are an important indicator of railway infrastructure quality. The analysis of the capacity of the lines included in the rail freight corridor OEM, which was graphically done in subchapter 4.3, revealed that:

- most of the capacity of the lines and line sections is used in the range of 50 89 %,
- within the corridor, there are lines with an overload capacity which may adversely affect the qualitative indicators of rail freight transport,
- within the corridor, there are approximately 40 % lines and line sections with a utilized capacity below 50 %, these lines may be effectively used in case of higher capacity demands, or as by-pass and alternative transport routes.

The analysis of the capacity of individual lines at present showed a sufficient provision for the possible and expected growth of transport performances within OEM corridor without a negative effect on the quantitative and qualitative indicators for rail freight services. In case of high demand on infrastructure manager services it is possible to use those lines efficiently, the capacity of which is utilized below 50 % with a minimal impact on the quality of rail system operation. A high increase in transport performances can lead to the overloading of some lines and line sections which can be solved only by construction of new railway infrastructure and changing of the transport organization and signalling systems. However, such measures require high investment costs, so it is necessary for infrastructure managers to be prepared to allocate the investment costs in order to increase the capacity of the lines and line sections concerned.

On the basis of information provided, an analysis of railway infrastructure utilization in the Member States of RFC OEM by rail passenger and freight transport on the whole network and on the lines included in RFC OEM was carried out. The evaluation of railway infrastructure utilization is given in Table 2. The share of rail transport on individual line section of the Member States is shown in Annex L.

	Passenger tra	nsport	Freight transport		
Country	CountryPart of the entire rail network (%)Part on RFC OEM (%)		Part of the entire rail network (%)	Part on RFC OEM (%)	
Germany	75,55	37,58	24,45	62,42	
Czech Republic	77,16	72,06	22,84	27,94	
Austria	70,55	-	29,45	-	
Slovak Republic	70,21	64,79	29,79	35,21	
Hungary	82,35	75,29	17,65	24,71	
Romania	69,73	57,22	30,27	42,78	
Bulgaria	73,19	-	26,81	-	
Greece	92,27	89,01	7,73	10,99	

	Table 2: Share of rail	passenger and fi	reight transport i	n the member	states of RFC OEM
--	------------------------	------------------	--------------------	--------------	-------------------

The bottlenecks of railway infrastructure negatively affect, in particular, its quantitative indicators the importance of which has continuously increased in the latest period analysed. The growth of transport performances in rail passenger and freight traffic has an effect on the overloading of the bottlenecks which may lead to a reduction in the quality of rail transport services and a higher risk of accidents. There are bottlenecks on the railway infrastructure included in rail freight corridor OEM, too. The analysis of bottlenecks in the individual countries is given in Appendix A. Appendix A contains the analysis and identification of all current bottlenecks of the corridor and, in case of some bottlenecks, also gives a suggestion for their elimination. The analysis of bottlenecks on the railway infrastructure of OEM corridor showed no decrease compared to the analysis of bottlenecks carried out in 2013. However, this situation can currently be assessed as stable, although an increase in bottlenecks is expected due to the growth of transport performances, the lack of capacity, low level of modernization of railway infrastructure and limited resources allocated to the removal of bottlenecks. In case the bottlenecks are not gradually removed, there is a risk of reducing the required quality of railway infrastructure services, thus rail transport services will not be competitive. The infrastructure managers and member states must therefore pay sufficient attention in the form of measures and investments in the gradual removal of bottlenecks which represent a restriction of reliable, safe, continuous and competitive transport infrastructure.

4.5 Description of EU TEN-T corridor Orient/East-Mediterranean

The trans-European transport network (TEN-T) is identified as a network of rail and road corridors, international airports, waterways and ports within Europe, designed primarily for improving the connection of transport infrastructure and increasing its qualitative parameters within EU countries.

At present, there are within 28 EU member states:

- 5 M km of roads,
- more than 215 000 km of railway lines,
- 41 000 km of navigable inland waterways.

The TEN-T network itself includes:

- 75 200 km of roads,
- 78 000 km of railway lines,
- 330 airports,
- 270 seaports,
- 210 inland ports.

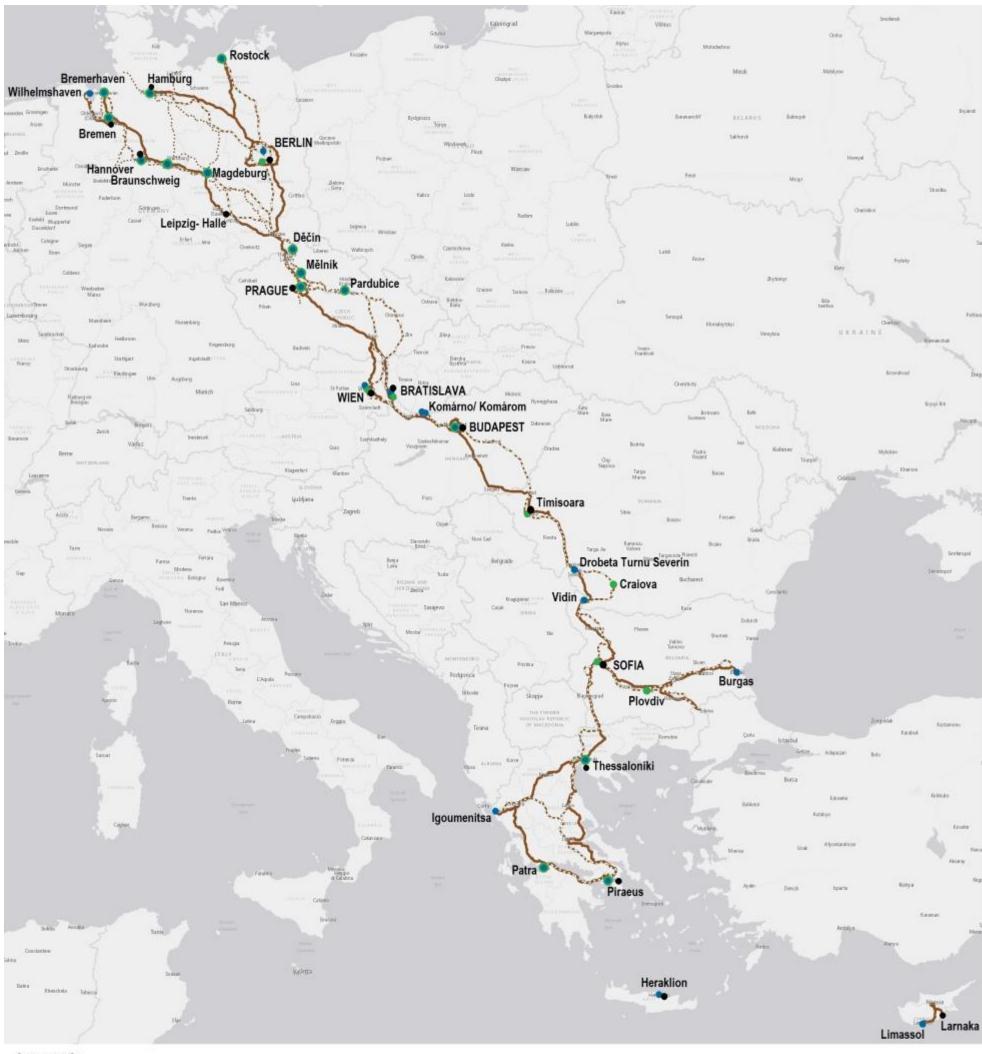
The TEN-T policy over the period 2014 - 2020 foresees an increase in the share of transport funding from EU resources to 26 billion EUR. The focus of funding is mainly on a defined new core network that will form the support axes of transport. The support of the new TEN-T core network will be a comprehensive network with regional and national links.

The TEN-T corridor Orient/East-Mediterranean connects Central Europe with maritime connection of the North Sea, the Baltic Sea, the Black Sea and the Mediterranean Sea which enables to optimize the use of ports concerned and the related sea routes. The corridor supports the development of ports as the main multimodal logistics sites and improves the multimodal connections of the major economic centres of Central Europe with the coast, e.g. Elbe River. The corridor also includes a sea line to the island of Cyprus. The corridor infrastructure as well as its routing is of high strategic importance for transport within the EU and connection to strategic global transport routes.

The TEN-T corridor Orient/East-Mediterranean includes the following infrastructure:

- 5 800 km of railway lines,
- 5 400 km of roads,
- 1 700 km of inland waterways,
- Passes through the territory of nine member states,
- 15 major city nodes,
- 13 seaports,

- 15 main airports,
- 17 inland ports,
- 27 terminals road -rail.


Table 3 analyses the traffic points included in TEN-T corridor Orient/East-Mediterranean in the individual countries. This table shows only information as listed in the TEN-T Regulation 1315/2013. A more extensive list of rail ports and terminals can be found at Appendix H.

Node name	Airport	Seaport	Inland port	*ITT
	Hamburg	Rostock	Braunschweig	Braunschweig
	Berlin-Brandenburg	Wilhelmshaven	Berlin	Berlin- Großbeeren
	Bremen	Bremen	Magdeburg	Bremen
Germany	Hannover	Bremerhaven	Hannover	Bremerhaven
	Leipzig - Halle	Hamburg	Hamburg	Hamburg
				Hannover
	-	-	-	Rostock
				Magdeburg
			Děčín	Děčín
			Mělník	Mělník
Czech			Pardubice	Pardubice
Republic	Praha Ruzyně	-		Česká Třebová
			Praha Holešovice	Brno
				Praha
Austria	Wien	-	Wien	Wien
Slovak	Bratislava	Bratislava	Bratislava	Bratislava
Republic	Brausiava	-	Komárno	Drausiava
			Budapest Csepel	Budapest (Soroksár)
Hungary	Budapest Ferihegy	-	Komarom	Metrans Buapest
			Komarom	RCT-BILK
			Drobeta Turnu Severin	Craiova
Romania	Timișoara	Constanta	Drobeta Turnu Severin	Railport Arad
			Calafat	Timișoara
Bulgaria	Sofia	Burgas	Vidin	Sofia
Bulgaria	Solla			Plovdiv
	Athina - El. Venizelos	Athina (Piraeus)		Athina (Piraeus)
	Heraklion	Heraklion.		Thessaloniki
Greece	Thessaloniki (Makedonia)	Igoumenitsa	-	Patras
		Patras		
	-	Thessaloniki		-
Cyprus	Larnaka	Limassol	-	-

 Table 3: Traffic points of TEN-T corridor Orient/East-Mediterranean

Source: http://ec.europa.eu/transport/infrastructure/tentec/tentec-portal/map/maps.html *ITT- Intermodal transport terminal

Legend:

Figure 11: Graphical representation of TEN–T corridor Orient/East-Mediterranean routing (Source: www.ec.europa.eu/tramsport/infrastructure/tentec)

4.6 Summary - basic comparison of RFC infrastructure

RFC corridors have been designed primarily on the basis of routing the main traffic flows of goods within the EU and the whole Europe in order to increase attractiveness, reliability and efficiency of the rail system taking into account the customer requirements as much as possible. Each corridor has its specific role and strategic routing adapted to the transport requirements of customers. In Table 4, a basic comparison of RFC infrastructure is given.

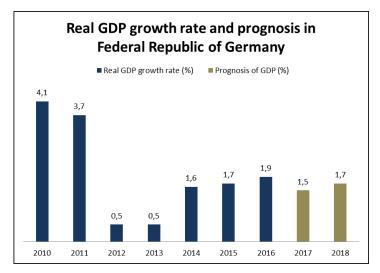
Table 4: Basic parameters of RFC corridors

Corridor name	Number of countries	Length of lines in km	Seaport	Inland port	*ITT
RFC 1 (Rhine - Alpine)	5	3 900	6	6	100
RFC 2 (North Sea - Mediterranean)	6	4 662	19	12	98
RFC 3 (ScanMed)	5	7 527	13	2	66
RFC 4 (Atlantic)	3	6 200	15	4	52
RFC 5 (Baltic - Adriatic)	6	4 825	8	3	84
RFC 6 (Mediterranean)	6	cca 7 000	9	4	90
RFC 7 (Orient/East - Med)	8	7 600	8	16	30
RFC 8 (North Sea - Baltic)	5	6 045	6	13	171
RFC 9 (Czech - Slovak)	2	1 248	0	2	12

Source: Annual reports of RFC corridors

*ITT- Intermodal transport terminal

Based on the basic comparison, OEM corridor may be put at the first place as regards the number of participating countries. The highest number of participating countries reflects its strategic and extensive routing and connecting the Orient/East-Mediterranean territory with Central and Northern Europe. The OEM corridor will fulfil an important task in the transport of goods from/to Turkey and the third countries of Asia and from/to EU countries. At the same time, the corridor, due its length of railway lines, belongs to the corridors having more than 7 000 km, which also confirms its extensive and strategic importance within EU transport infrastructure.


5 ANALYSIS OF ECONOMIC, TRANSPORT AND TRAFFIC INDICATORS

This chapter contains an analysis of the development of basic economic and transport indicators in individual countries included in the OEM. An important part of the chapter is the comparison of modal split for the individual countries. The chapter also contains a prognosis of economic growth based on the data from financial institutions of the countries concerned. A part of the chapter is the prognosis of development of transport performances within the railway infrastructure in question.

5.1 Federal Republic of Germany

A) Economy

GDP is an important indicator affecting the quality of life. The Figure below shows the GDP development in the Federal Republic of Germany. At the same time, the analysis of the development of GDP per capita at purchasing power parity is given in Table 5.

Graph 1: GDP development and prognosis in the Federal Republic of Germany (Source: Eurostat, Statistics of European Commission)

Table 5: GDP per capita of the Federal Republic of Germany at purchasing power parity

Description	Reality		
Year	2013 2014 2015		
Index (EU28= 100)	100	100	100
Federal Republic of Germany	124	125	124

Source: Eurostat, Statistics of European Commission

GDP growth analysis has shown a gradual increase since 2014. GDP development prognosis also assumes a growth and thus a steady increase in employment and wages.

Table 6 provides an analysis of the development of investments in the whole transport infrastructure and Table 7 analyses the development of investments in OEM infrastructure in the Federal Republic of Germany.

Table 6: Development of investment in transport infrastructure in the Federal Republic of Germany

Investment in infrastructure	2013	2014	2015			
Investment subsidies in mill. €						
rail	10 137	9 789	10 298			
road	7 655	6 600	6 463			
air	654	697	801			
water	1 997	2 049	2 056			
Non-investment subsidies in mi	I. € N/A					

Source: Traffic in number 2015/2016

Table 7: Investment subsidies to railway lines included in RFC OEM

Line included in RFC OEM	Investment subs	sidies in mill. €			
Line included in RFC OEM	Previous years	Total cost			
Bad Schandau – Wilhelmshaven					
ABS Leipzig - Dresden	1200	1450			
KLV Lehrte	25	140			
Knoten Dresden	150	1000			
Elektrifiz. und Ausbau Oldenb Wilhelmsh.	50	800			
Bremen – Bremerhaven					
Anteil "Alpha"	0	120			
Berlin/Magedeburg- Hamburg					
Knoten Hamburg	100	550			
Dresden – Rostock					
ABS Berlin - Dresden	300	800			
Knoten Berlin	100	800			
ABS Berlin - Rostock	700	1000			

Source: BVWP 2030 and input of department DB Netzinternfor Federal Transport Infrastructure Plan

The available data on investment activities of the Federal Republic of Germany shows a decrease in investments in road infrastructure with a slight increase in investments in air, rail and water transport. The investments in lines planned for inclusion in the OEM corridor are at sufficient level compared to the whole railway infrastructure.

Table 8 presents selected charge indicators of railway infrastructure within the Federal Republic of Germany.

Table 8: Selected economic indicators of rail transport in the Federal Republic of Germany

Indicators/Year	2013	2014	2015
Average amount of revenues (€) from carriers per 1 km of RFC OEM track for freight transport	2,67	2,73	2,80
Average amount of revenues (€) from carriers per 1 km of RFC OEM track for passenger transport	4,67	4,78	4,90
Average price (\in) of charge for use of railway infrastructure for standard trains on RFC corridor	N/A	N/A	N/A

Source: IRG- rail "Market Monitoring Report"(March 2016), TPS DB Netz AG

B) Transport

Tables 9 and 10 analyse the development of import of goods into EU countries from the Federal Republic of Germany. At the same time, the tables contain a specific analysis of the import of goods development from the Federal Republic of Germany into the countries of the OEM corridor.

Table 9: Imports of goods into EU from the Federal Republic of Germany in mill. ϵ

State/ Year	2013	2014	2015
TOTAL EU 28 countries	609 233,3	634 274,2	674 199,7
Austria	56 870,0	56 595,3	58 472,2
Bulgaria	2 793,7	3 213,1	3 395,4
Czech Republic	32 786,5	34 952,4	38 081,8
Greece	4 539,8	4 841,0	4 690,7
Hungary	18 853,8	19 982,7	21 589,0
Romania	10 242,7	11 219,8	12 501,5
Slovakia	11 209,6	11 559,5	12 735,1
TOTAL RFC OEM countries	137 296,1	142 363,8	151 465,7

Source: European Commission – Trade – Export Helpdesk - Statistics

State/ Year	2013	2014	2015
TOTAL EU 28 countries	293 015,1	287 747,0	283 633,5
Austria	27 896,9	27 166,3	29 606,8
Bulgaria	579,2	836,9	758,9
Czech Republic	15 982,5	15 772,5	17 841,1
Greece	1 263,7	1 355,1	1 274,6
Hungary	4 077,3	4 551,9	5 110,5
Romania	2 148,5	2 165,2	2 464,1
Slovakia	3 155,8	3 298,0	3 465,9
TOTAL RFC OEM countries	55 103,9	55 145,9	60 521,9

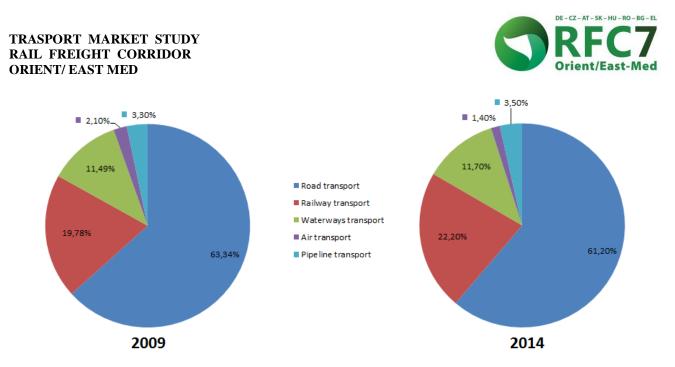
Source: European Commission – Trade – Export Helpdesk – Statistics

Tables 11 and 12 analyse the development of the import of goods from EU countries into the Federal Republic of Germany. At the same time, the tables contain a specific analysis of the goods import development into the Federal Republic of Germany from the countries of the OEM corridor.

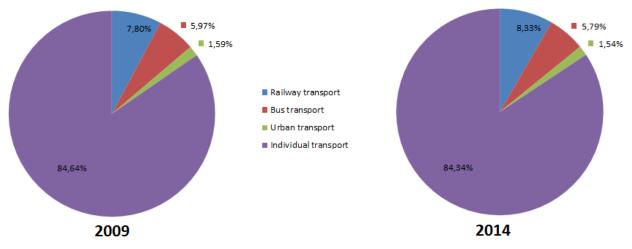
State/ Year	2013	2014	2015
TOTAL EU 28 countries	585 546,13	605 226,84	631 613,34
Austria	39 077,5	39 161,6	40 515,1
Bulgaria	2 741,4	2 655,2	2 893,8
Czech Republic	38 246,7	42 176,3	45 767,3
Greece	1 793,3	1 798,5	1 893,9
Hungary	21 081,2	23 398,8	24 870,2
Romania	9 192,1	10 100,7	10 770,6
Slovakia	13 392,5	14 279,0	15 198,4
TOTAL RFC OEM countries	125 524,6	133 570,1	141 909,4

Table 11: Imports of goods into the Federal Republic of Germany from EU in mill. ϵ

Source: European Commission - Trade - Export Helpdesk - Statistics


Table 12: Imports of goods into the Federal Republic of Germany from EU in thous. tonnes

Country/Year	2013	2014	2015
TOTAL EU 28 countries	378 741,86	386 095,42	374 436,23
Austria	18 247,79	18 438,78	18 527,58
Bulgaria	796,82	847,33	773,82
Czech Republic	17 704,69	19 201,10	21 127,49
Greece	1 048,71	1 040,66	1 089,23
Hungary	4 817,52	5 392,82	5 405,58
Romania	1 657,50	1 741,18	1 774,02
Slovakia	3 598,57	4 095,69	4 078,36
TOTAL RFC OEM countries	47 871,60	50 757,55	52 776,08


Source: European Commission – Trade – Export Helpdesk - Statistics

The international trade analysis carried out in Tables 9 to 12 between the Federal Republic of Germany and EU countries has shown a gradual growth. The gradual increase in international trade has also been demonstrated between the countries of the OEM corridor. Growth in international trade is due to the economic development of the Federal Republic of Germany as well as the development of other EU countries. Growth in international trade has a positive effect on the demand for international rail freight services. The analysis has shown a sufficient potential to maintain rail system performances as well as the prospect of gaining new transports. A higher level of reliability, safety, acceptable transport time and quality of rail system services are required within the demand. The OEM corridor and its services also have a significant impact on the improvement of the quality of international rail freight services.

Graph 2 and Graph 3 show a graphical comparison of the modal split in the Federal Republic of Germany in 2014 to 2009. The comparison is made in the period of 5 years giving sufficient time for the market response to modal split changes after measures had been taken to support rail transport within EU.

Graph 2: Comparison of modal split in freight transport in the Federal Republic of Germany (Source: listed in Appendix I)

Graph 3: Comparison of modal split in passenger transport in the Federal Republic of Germany (Source: Eurostat, Statistical pocketbook 2016)

The comparison of modal split in the Federal Republic of Germany shows a change in favour of rail passenger and freight transport.

Table 13 provides an analysis of the development of transport performances in the Federal Republic of Germany in the period of 2013 – 2015. At the same time, Table 14 contains an analysis of the development of the number of railway undertakings providing railway infrastructure services in the Federal Republic of Germany.

Transport mode	Carrier	Scope	Transp. perform./Year	2013	2014	2015
	National carrier	total	train- km in thous.	760 200	763 300	748 700
Passenger transport		on RFC OEM	train-km in thous.	1 355	1 346	1 361
i assenger danspore	Private carrier	total	train-km in thous.	154 927	158 466	174 918
		on RFC OEM	train-km in thous.	0	0	0
		total	train-km in thous.	196 000	193 200	187 000
	National carrier		gross ton-km in mill. *	75,2	74,8	71
		on RFC OEM	train-km in thous.	1 852	1 845,0	924
Freight transport			gross ton-km in mill. *	N/A	N/A	N/A
i reight dansport		total	train-km in thous.	95 256	100 066	111 951
	Private carrier		gross ton-km in mill. *	37,4	37,8	45,6
		on RFC OEM	train-km in thous.	534	483	1 337
			gross ton-km in mill. *	N/A	N/A	N/A

 Table 13: Transport performances in rail passenger and freight traffic in 2013 - 2015

Source: Data and facts DB Netz, DB Netz – Tool (Remax) and LeiDis

*Competition report 2016 Deutsche Bahn AG (Mai 2016) aligned with annual report 2015 of Federal Network Agency for electricity, telecommunication, gas, post and railways

Table 14: Structure of rail carriers in the territory of the Federal Republic of Germany

	Structure of RU's (number of carriers on RFC OEM)																			
	2013 2014							2015												
		onal rier			ate ier	Total		National Private carrier carrier Total			Total			onal rier			ate ier	Total		
F	Р	F+P	F	Р	F+P		F	Р	F+P	F	Р	F+P		F	Р	F+P	F	Р	F+P	
2	3	5	49	2	51	56	2	3	5	50	2	52	57	2	3	5	54	4	58	63

Source: Data and facts DB Netz, DB Netz - Tool (Remax) and LeiDis

Note:

F- Rail freight carrier

P-Rail passenger carrier

The analysis of transport performances of rail transport in the Federal Republic of Germany shows a slight increase. An increase in transport performances can be observed on the lines which will be included in the OEM corridor, too. Following the inclusion of lines in the corridor, a further increase in transport performances in international rail freight transport is expected, which will be influenced also by OEM corridor services. The analysis has shown an increase in transport performances for private carriers which is mainly due to the entry of new carriers into the market of rail services in the Federal Republic of Germany.

Table 15 analyses the bottlenecks of railway infrastructure in the Federal Republic of Germany, included in the OEM corridor.

Table 15: Bottlenecks in railway infrastructure in the Federal Republic of Germany

Line section	Bottlenecks because of technical requirements	Reasons	Suggestions how to move bottlenecks
Bad Schandau - Wilhelmshaven	Oldenburg - Wilhelmshaven	no electric traction	Project ABS Oldenburg - Wilhelmshaven (electrification)
Bremen - Bremerhaven	no	-	-
Berlin/ Magedeburg - Hamburg	no	-	-
Dresden - Rostock	no	-	-

Source: Member from the Federal republic of Germany, *Bad Schandau – Dresden several temporarily construction works are planned, section will become a bottleneck at this period

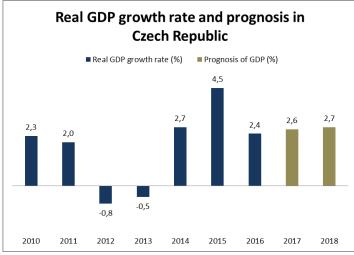
Table 16 contains data on average running times on the individual analysed lines in the Federal republic of Germany.

Table 16: Comparison of transport time and transport charge on individual lines

	Transp	ort time	Transport charges
Line section	Average transport time by rail∆ (min) premise: no stops*	Average transport time by truck (hour, min)	Access charges for "standard train" (1.600 t and 700 m) price freight transport 2015 (€)
Bad Schandau - Wilhelmshaven	ca. 10 h	9 h 2 m**	1 722
Bad Schandau - Bremerhaven	ca. 10 h	8 h 27 m**	1 722
Bad Schandau - Hamburg	ca. 9 h	7 h 52 m**	1 540
Bad Schandau - Rostock	ca. 8 h	7 h 3 m**	1 386

Source: Member from the Federal republic of Germany

*Assumption for a train with an average speed of 60 km/h (for a train with scheduled speed of 100 km/h) without waiting time


**Average speed in road goods transport is 70 km/h (in Germany)

5.2 Czech Republic

A) Economy

Based on the importance of GDP, GDP development in the Czech Republic is shown in the table below. At the same time, Table 17 analyses the GDP development per capita at purchasing power parity.

Graph 4: GDP development and prognosis in the Czech Republic (Source: Eurostat, Statistics of European Commission)

Table 17: GDP per capita of the Czech Republic at purchasing power parity

Description	Reality						
Year	2013	2014	2015				
Index (EU28 = 100)	100	100	100				
Czech Republic	84	86	87				

Source: Eurostat, Statistics of European Commission

The GDP development analysis, including a prognosis for 2017 and 2018 in the Czech Republic, assumes a positive growth rate above 2 %. At the same time, there is a slight positive increase in purchasing power parity, which confirms price stability in the Czech Republic.

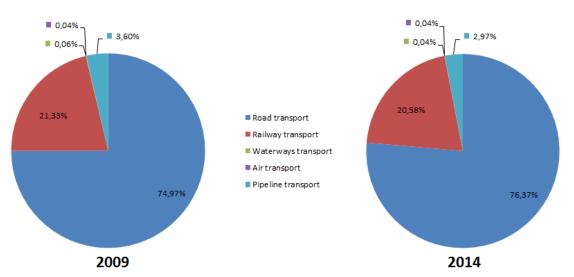
The Table 18 provides an analysis of the investment development in \in in individual modes of transport in the Czech Republic in the period of 2013 – 2015. The investment development analysis in CZK is given in Appendix B. At the same time, Table 19 analyses the development of investment in the lines included in OEM corridor.

Investment in infrastructure	2013	2014	2015	
Investment subsidies in mill. €	1012,86	1136,42	2129,70	
rail	322,88	473,60	1177,20	
road	623,23	615,99	894,69	
air	53,51	36,69	36,79	
water	6,89	9,74	15,28	
Non-investment subsidies in mil. $ildsymbol{\epsilon}$	879,25	1047,15	1378,12	
rail	363,41	432,05	668,07	
road	493,86	598,76	691,66	
air	14,60	9,13	8,25	
water	4,45	4,58	7,56	

Table 18: Development of investment in transport infrastructure the Czech Republic in mill. ϵ

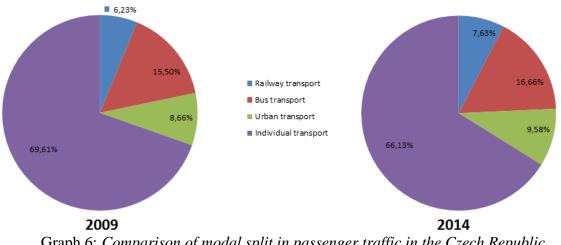
Source: Member of RFC OEM from the Czech Republic

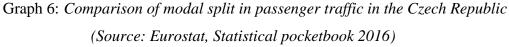
Lines included in RFC OEM	Investment subsidies in mill. €							
Lines included in KFC OEM	2013	2014	2015	Expected year				
Praha – Kolín	5,81	14,72	39,18	16,53				
Kolín - Česká Třebová	13,41	23,68	22,29	7,63				
Česká Třebová – Brno	2,77	3,24	22,31	7,75				
Brno – Lanžhot st.hr.	15,12	20,74	15,17	0,44				
Kolín – Brno (via Havlíčkův Brod)	2,7	16,05	83,06	39,55				


Table 19: Investment subsidies to railway lines included in RFC OEM

Source: Member of RFC OEM from the Czech Republic

The analyses carried out in the Czech Republic have shown an increase in investment in rail and road transport. Increase in investment is positively reflected in the modernization and subsequent increase in qualitative and quantitative indicators of railway infrastructure. At the same time, the increase in investment in the railway infrastructure has impact on the reducing the infrastructure charges making the rail sector more cost-competitive in relation to road goods transport.


B) Transport


Graph 5 and Graph 6 show a graphical comparison of the modal split in the Czech Republic in 2014 to 2009. The comparison is made in the period of 5 years giving sufficient time for the market response to modal split changes after measures had been taken to support rail transport within the EU.

Graph 5: Comparison of modal split in freight traffic in the Czech Republic (Source: listed in Appendix I)

The modal split comparison in the Czech Republic showed a change in favour of road goods transport compared to rail freight traffic. In rail passenger traffic, the change of the modal split was recorded in favour of rail passenger traffic, particularly at the expense of individual motoring.

Table 20 contains an analysis of transport performance development in the Czech Republic in the period of 2013 - 2015. At the same time, Table 21 contains an analysis of the development of the number of railway undertakings providing railway infrastructure services in the Czech Republic.

Transport mode	Carrier	Scope	Transp. perform./Year	2013	2014	2015
	National carrier	total	train-km in thous.	120 217,3	118 522,39	117 182,94
Passenger transport	i varionar carrier	on RFC OEM	train-km in thous.	19 680,13	19 182,01	19 000,5
0 1	Private carrier	total	train-km in thous.	5 505,82	5 795,95	6 157,26
		on RFC OEM	train-km in thous.	1 247,94	1 637,8	1 882,12
		total	train-km in thous.	26 816,04	25 129,97	24 518,71
	National	totai	gross ton-km in mill.	25 920,92	24 066,79	23 063,81
	carriers	on RFC OEM	train-km in thous.	6 122,45	5 616,53	5 494,37
Encipht transport		OII KFC OEM	gross ton-km in mill.	6 177,4	5 546,12	5 305,93
Freight transport		total	train-km in thous.	8 625,81	10 683,06	11 985,04
	Private carriers	totai	gross ton-km in mill.	7 828,58	10 196,92	11 384,56
	T IIvate carriers	on RFC OEM	train-km in thous.	1 598,31	2 097,96	2 602,51
		OII KFC UEM	gross ton-km in mill.	1 510,61	2 012,67	2 608,1

Table 20: Transport performances in rail passenger and freight traffic in 2013 - 2015

Source: Member of RFC OEM from the Czech Republic

	Structure of RU's (number of carriers on RFC OEM)																			
2013 2014											20	015								
		onal rier			ate ier			National carrier			Private carrier		Total							
F	Р	F+P	F	Р	F+P		F	Р	F+P	F	Р	F+P		F	Р	F+P	F	Р	F+P	
0	0	2	61	2	20	85	0	0	2	65	2	20	89	0	0	2	70	1	21	94

Table 21: Structure of rail carriers in the territory of the Czech Republic

Source: Member of RFC OEM from the Czech Republic

The analysis of transport performances in the Czech Republic showed a slight decrease in the total performances of rail passenger traffic. At the same time, an increase in total transport performances on the lines included in the OEM corridor was demonstrated. The analysis showed a positive development of transport performances at private carriers. The increase in these performances was also affected by the successive entry of new carriers into the Czech Republic market.

Table 22 presents the development of the number of individual trains in international rail traffic according to divisions in the period of 2013 - 2015.

International freight trains request type comparison	Annual	Annual Late	Interim	Ad-hoc	Instant			
Year	2013							
Number of international freight trains operated	494 (128759)	35 (4501)	451 (22977)	4737 (8854)	33061 (33177)			
Year	2014							
Number of international freight trains operated	458 (111787)	86 (17589)	442 (29919)	4961 (10662)	37802 (37928)			
Year	2015							
Number of international freight trains operated	452 (106767)	51 (9886)	446 (17577)	5772 (10139)	47024 (47143)			

Table 22: Number of international freight trains according to individual divisions

Source: Member of RFC OEM from the Czech Republic

Explanation:

Annual - All trains which have been requested until X-8.

Annual late - National deadlines may vary, but roughly all trains which have been requested between X-8 and X-2.

Interim - National deadlines may vary but roughly all trains which have been requested between X-2 and 4-5 weeks before the first day of train operation

Ad hoc - National deadlines may vary but roughly all trains which are not included in the categories above and requested at latest 3-7 calendar days before the first day of operation

Instant - All trains which are not included in the categories above.

Remarks:

The first number = number of path request

The second number = number of days of running

There are no just only loco trains included

There are no path and days of running if RU cancelled the path during the regular change of annual TT

Ad hoc = more than 3 days before train run

Instant = less than 3 days before train runs

Table 23 analyses the bottlenecks of railway infrastructure in the Czech Republic, included in the OEM corridor.

Table 23: Bottlenecks in railway infrastructure in the Czech Republic

Line section	Bottlenecks	Reasons	Suggestion how to move bottlenecks
Kutná Hora - Havlíčkův Brod	Vlkaneč - Světlá nad Sázavou	Max speed only 70 km/h	-
Praha - Česká Třebová	Line capacity consumption	between 5:00-20:00 more than 100%	-

Source: Member of RFC OEM form the Czech Republic

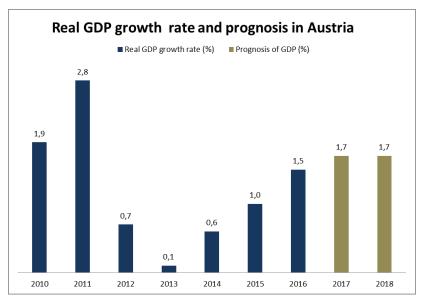
Table 24 contains data on the average running times and charges on individual analysed lines in the Czech Republic.

Table 24: Comparison of transport time and transport charges in the Czech Republic

	Transp	ort time	Transport charges				
Line section	Average transport time by rail∆ (min)	Average transport time by truck (hour:min)	Access charges for "standard train" (1.600 t and 700 m*)	Charges for the truck (road)			
Praha – Libeň – Česká Třebová	135	2 h 55 m**	630,84 €	N/A			
Česká Třebová – Brno	90	1 h 29 m**	353,85 €	N/A			
Brno – Lanžhot st.hr.	75	1 h 6 m**	279,97 €	N/A			
Kolín – Brno	180	2 h 46 m**	677,01 €	N/A			

Source: Member of RFC OEM from the Czech Republic

**Average speed in road goods transport is 60 km/h


Other additional information on the Czech Republic is given in Appendix B.

5.3 Austria

A) Economy

Based on the importance of GDP, GDP development in Austria is shown in the Figure below. At the same time, an analysis of GDP development per capita at purchasing power parity is carried out in Table 25.

Graph 7: GDP Development and prognosis in Austria (Source: Eurostat, Statistics of European Commission)

Table 25: GDP per capita of Austria at purchasing power parity

Description	Reality					
Year	2013	2014	2015			
Index (EU28 = 100)	100	100	100			
Austria	131	129	128			

Source: Eurostat, Statistics of European Commission

The analysis of GDP development, including the prognosis for 2017 and 2018 in Austria, assumes a positive growth rate. At the same time, a slight change of the purchasing power parity is recorded, which confirms a decrease in prices in Austria.

Table 26 shows the development of the number of railway undertakings for the years 2013 – 2015 which have an authorized access to the railway infrastructure managed by ÖBB INFRA.

Table 26: Number of railway undertakings with authorized access to ÖBB INFRA

Year	2013	2014	2015	
Number of carriers	31	31	41	

Source: ÖBB INFRA annual reports

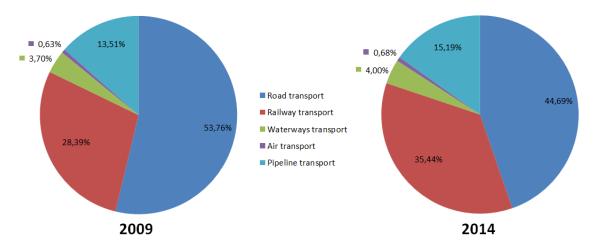
B) Transport

Table 27 shows the development of rail passenger transport performances carried out on the network managed by $\ddot{O}BB$ INFRA in the years 2009 - 2015. At the same time, an analysis of the development of rail freight transport performances is carried out in Table 28.

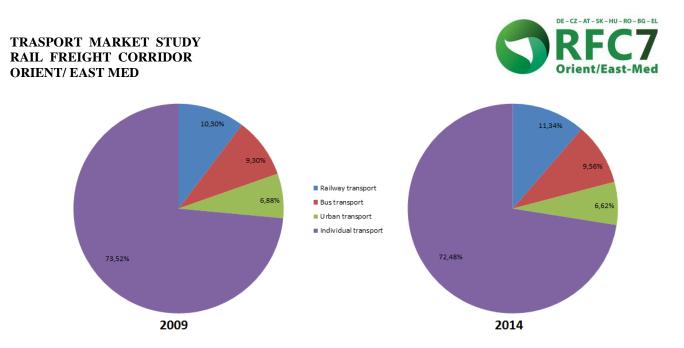
Performance/Year	2013	2014	2015
National RU in mill. Train-km	91,2	92,1	92,7
Other RU mill. Train-km	4,4	4,7	4,8
TOTAL mill. Train-km	95,6	96,8	97,5
National RU mill. Gross ton-km	26 991,5	27 320,7	27 606
Other RU mill. Gross ton-km	1 357	1 473	1 523
TOTAL mill. Gross ton-km	28 348,5	28 794	29 129

Table 27: Passenger transport performances for 2013 – 2015

Source: ÖBB INFRA annual reports


Table 28: Freight transport performances for 2013 – 2015

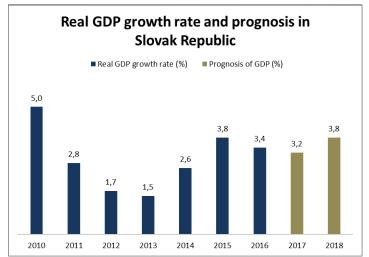
Performance/Year	2013	2014	2015
National RU in mill. Train-km	33,1	33,3	32,7
Other RU mill. Train-km	6,6	7,8	8
TOTAL mill. Train-km	39,7	41,1	40,7
National RU mill. Gross ton-km	35 163	35 330	34 539
Other RU mill. Gross ton-km	8 326	9 928	10 301
TOTAL mill. Gross ton-km	43 489	45 258	44 849


Source: ÖBB INFRA annual reports

In rail passenger transport, there is a gradual increase in transport performances in the monitored period. The growth in transport performances is also confirmed by national and private carriers. A decrease of transport performances is recorded in 2015 compared to 2014 in freight transport. An increase in transport performances is demonstrated by private carriers.

Graph 8 and Graph 9 show a graphical comparison of the modal split in Austria in 2014 to 2009. The comparison is made in the period of 5 years giving sufficient time for the market response to modal split changes after measures had been taken to support rail transport within the EU.

Graph 8: Comparison of modal split in freight transport in Austria (Source: listed in Appendix I)


Graph 9: Comparison of modal split in passenger transport in Austria (Source: Eurostat, Statistical pocketbook 2016)

The comparison of modal split in Austria confirmed a significant change of the modal split in favour of rail freight transport. This change is mainly affected by the state transport policy, liberalization measures and the quality of transport infrastructure and service. A slight change is also recorded in favour to rail passenger transport.

5.4 Slovak Republic

A) Economy

Based on the importance of GDP, GDP development in the Slovak Republic is shown in Figure below. At the same time, Table 29 analyses the development of GDP per capita at purchasing power parity.

Graph 10: GDP development and prognosis in the Slovak Republic (Source: Eurostat, Statistics of European Commission)

Description	Reality					
Year	2013	2014	2015			
Index (EU28 = 100)	100	100	100			
Slovak republic	77	77	77			
		<i>11</i>				

Table 29: GDP per capita of the Slovak Republic at purchasing power parity

Source: Eurostat, Statistics of European Commission

The analysis of GDP development, including the prognosis for 2017 and 2018 in the Slovak Republic, assumes a positive growth rate above 3 %. At the same time, there is no change in purchasing power parity, which confirms the price stability in the Slovak Republic.

Table 30 contains an analysis of the development of investment in \in in individual modes of transport in the Slovak Republic in the period of 2013 – 2015. At the same time, an analysis of the development of investment in lines included in the OEM corridor is carried out in Table 31.

Table 30: Development of investments in transport infrastructure in the Slovak Republic

State investment in infrastructure	2013	2014	2015							
Investment subsidies in mill. €:										
rail	330,3	283,7	285*							
road	564,1	731,3	758,7*							
air	5,3	5,8	6,2*							
water	4,4	9,6	8,6*							
Non – investment subsidies in mill. €/year rail 2	250/2014,202	15								

Source: Member of RFC OEM from the Slovak Republic *- data from the website of the Ministry of Transport

Table 31: Investment subsidies to railway lines included in RFC OEM

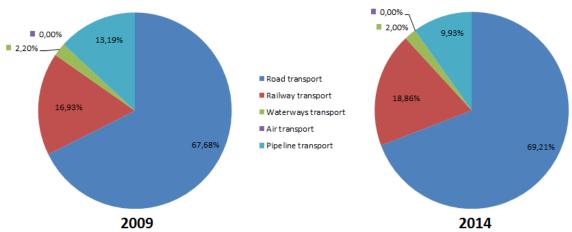
Line included in RFC OEM	Investment subsidies in mill. €							
Line included in KFC OEM	2013	2014	2015	2016 +				
Line included in RFC OEM	11,69	11,46	20,62	327,88				
		,						

Source: Member of RFC OEM from the Slovak Republic

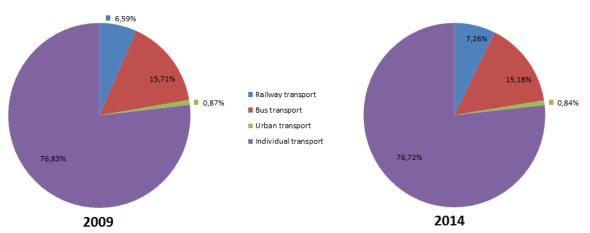
The analysis of the investments in individual modes of transport has shown a successive increase in road and air transport. Investments in rail transport are stagnant. Investments in rail transport are planned in the amount of 2 billion EUR for the period 2014 - 2020. A significant increase in investments is allocated to the lines included in the OEM corridor; a similar trend is expected also in the next planning period.

Table 32 contains an analysis of selected charge indicators of rail transport in the Slovak Republic.

Table 32. Selected	economic indicators	of rail transport	t in the Slovak Republic
Tuble 52. Selected	economic maiculors	οј ταιι ιταπεροτί	і іп те зючик Керибііс


Indicators/Year	2013	2014	2015
Average amount of revenues (€) from carriers per 1 km of RFC OEM track for freight transport	15 604	*9 930	*11 161
Average amount of revenues (€) from carriers per 1 km of RFC OEM track for passenger transport	17 050	*17 164	*18 028
Average price (€) of charge for use of railway infrastructure for standard freight trains on RFC OEM	141,5	*83,3	*85,6
Average costs (€) per 1 km track with respect to whole infrastructure	115 137,55	115 151,11	117 915,58
Average costs (€) per 1 km track on RFC OEM network	151 536,62	140 630,88	137 374,75
Non-investment subsidies (€) per 1 km of railway infrastructure	71 468	74 980	74 980

Source: Member of RFC OEM from the Slovak Republic


*Applied reduced reimbursement according to Government Resolution no. 390/2013

B) Transport

Graph 11 and 12 show a graphical comparison of the modal split in the Slovak Republic in 2014 to 2009. The comparison is made in the period of 5 years giving sufficient time for the market response to modal split changes following measures to support rail transport within the EU.

Graph 11: Comparison of modal split in freight transport in the Slovak Republic (Source: listed in Appendix I)

Graph 12: Comparison of modal split in passenger trasnport in the Slovak Republic (Source: Eurostat, Statistical pocketbook 2016)

The modal split comparison in the Slovak Republic showed a change in favour of rail passenger and freight traffic.

Table 33 contains an analysis of the development of transport performances in the Slovak Republic in the period of 2013 – 2015. At the same time, Table 34 contains an analysis of the development of the number of railway undertakings providing railway infrastructure services in the Slovak Republic.

Transport mode	Carrier	Scope	Transp. Perform./Year	2013	2014	2015
		total	train- km in thous.	30 356	30 724	31 801
	National	totai	gross ton- km in mill.	8 371	8 556	9 373
	carrier	on REC OFM	train- km in thous.	4 697	4 579	4 879
Passenger transport	Private carrier on RFC OEM gross to train-k gross to trai	gross ton- km in mill	1 678	1 669	1 764	
		total	train- km in thous.	1 215	1 351	2 789
Private		totai	gross ton-km in mill.	136	190	803
	carrier	DECOEM	train- km in thous.	1 180	1 205	1 214
on		on RFC OEM	gross ton-km in mill.	125	116	129
	total	train- km in thous.	11 557	11 240	11 436	
	National	totai	gross ton-km in mill.	15 256	15 186	15 210
	carrier	on RFC OEM	train- km in thous.	1 532	1 358	1 479
Freight transport		OII KFC UEM	gross ton-km in mill.	1 539	1 341	1 477
reight transport		total	train- km in thous.	2 518	2 979	3 237
	Private	total	gross ton-km in mill.	2 376	2 795	3 243
	carrier	on RFC OEM	train- km in thous.	1 379	1 608	1 832
			gross ton-km in mill.	1 434	1 686	1 893

Table 33: Transport performances in passenger and freight transport in 2013 – 2015

Source: Member of RFC OEM from the Slovak Republic

Table 34: Structure of rail carriers on the territory of the Slovak republic

	Structure of RU's (number of carriers on RFC OEM)																			
			20)13				2014				2014 2015								
		onal rier			ate ier	Total			onal rier		Private carrier		Total		National Pri carrier car				Total	
F	Р	F+P	F	Р	F+P		F	Р	F+P	F	Р	F+P		F	Р	F+P	F	Р	F+P	
1	1	0	42	1	0	45	1	1	0	43	4	0	49	1	1	0	43	5	0	50

Source: Member of RFC OEM from the Slovak republic

The analysis of transport performances in the Slovak Republic showed a gradual increase in both rail passenger and freight traffic. At the same time, there is a gradual increase in the number of carriers which is positively demonstrated in increase in transport performances. A gradual increase in transport performances is also recorded on the lines included in the OEM corridor. This increase is mainly caused by international rail transit transport.

Table 35 contains an analysis of the order of performances on the lines included in the OEM corridor. The analysis of capacity utilization of railway infrastructure in the Slovak Republic is carried out in Table 36.

Volume of orders of performances on the lines included in RFC OEM	Transport performance/Year	2013/2014	2014/2015	2015/2016
Through C-OSS	train-km in thous.	0,23	0	151,78
	gross ton-km in mill.	0,18	0	213,79
Out of C-OSS	train-km in thous.	2911	2966	3311
	gross ton-km in mill.	2976	3027	3370

 Table 35: Volume of orders of performances on the lines included in RFC OEM

Source: Member of RFC OEM from the Slovak republic

Table 36: Average share of use of offered capacity

Indicator description/Year		2014	2015
Average share of (in %) use of maximum offered capacity on all lines	36,70	38,50	40,70
Average share of (in %) use of maximum offered capacity on RFC OEM lines	28,19	27,89	32,17
Share of (in %) used capacity on RFC OEM lines ordered through C-OSS	*	0,00	37,00

Source: Member of RFC OEM from the Slovak republic

*November 2013- year of corridor start. Only one promotional route has been carried out.

The analysis of route orders within the lines included in the OEM corridor showed a significantly low share of order through C-OSS. This is due to the short-term functioning of international freight corridors. Currently, an increase in orders within C-OSS is expected. The capacity analysis showed a sufficient provision for an expected increase in transport performances on the lines included in the OEM corridor due to economic development and the quality of OEM corridor services.

Table 37 provides an analysis of the average charges for the use of railway infrastructure on the lines included in the OEM corridor for selected train types.

	Charges			
Line section	Transport of containers	Transport of chemicals	Transport of standard goods	
Line section	Access charges for intermodal train (ca. 40 x40'containers- 600 m, 1200 t,)**	Access charges for block train (ca.500 m, 1800 t, chemicals)**	Access charges for single loading wagons (ca.500 m, 1500 t,)**	
Kúty št. hr Devínska N.Ves	190	244	217	
Devínska N. Ves – Bratislava hl. St.	61	73	67	
Bratislava hl. St Dunajská Streda	130	166	148	
Dunajská Streda – Komárno št. hr.	144	185	164	
Bratislava hl. StRusovcešt. Hr.	93	124	108	
Bratislava hl. St Nové Zámky	285	371	328	
Nové Zámky – Komárno št. hr.	143	175	159	
Nové Zámky – Štúrovo št. hr.	207	249	228	

Table 37: Comparison of transport charges in rail freight traffic in the Slovak Republic

Source: Member of RFC OEM from the Slovak republic

**prices without reduced reimbursements

Table 38 and 39 give a comparison of the average running times of individual train types on selected transport routes.

Line section	Average transport time (min) on infrastructure manager line	Average transport time (min) between cross-border stations	Average transport time (min) on line included in RFC OEM
Rusovce – Bratislava – Kúty (RFC OEM)	N/A	N/A	3 h 4 min
Dunajská Streda – Komárno (RFC OEM)	N/A	N/A	1 h 25 min
Bratislava – Čierna nad Tisou (cez ZA)	13 h 44 min*	N/A	N/A
Bratislava – Čierna nad Tisou (cez ZV)	16 h 44 min*	N/A	N/A
Rusovce – Bratislava – Kúty	3 h 20 min*	N/A	N/A
Kúty – Štúrovo	4 h 07 min*	N/A	N/A
PPS Kúty – Štúrovo	N/A	5h 21min**	N/A
PPS Devínska NV – Kúty	N/A	55 min**	N/A
PPS Kúty – Rusovce	N/A	2h 34 min**	N/A
PPS Komárno – NZ – Devínska NV	N/A	2h 18 min**	N/A
PPS Komárno – NZ – Kúty (cez Jablonicu)	N/A	4h 38 min**	N/A

Table 38: Comparison of average transport times by rail traffic

Source: Member of RFC OEM from the Slovak Republic

*Average time including stays (plan) **Real time of trains went through

Table 39: Comparison of average speeds of individual type of trains on ŽSR network

Line section	Average speed Nex (km/h)	Average speed of block train of combined transport (km/h)	Average speed Pn (km/h)
Rusovce – Bratislava – Kúty (RFC OEM)	57,75 / 30,36 / 33,87*	N/A	N/A
Dunajská Streda – Komárno (RFC OEM)	49,29 / 27,83 / 34,03*	N/A	N/A
ŽSR principal lines	N/A	60,47 / 36,70**	N/A
ŽSR principal lines	N/A	N/A	56,30 / 31,66 **

Source: Member of RFC OEM from the Slovak Republic

*Technical/Line / Real speed of RFC trains **Technical/Line speed

Some important additional data on the Slovak Republic is given in Appendix C.

5.5 Hungary

A) Economy

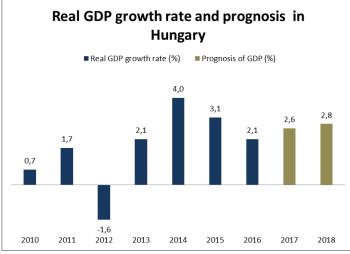

The analysis of the development of GDP per capita at purchasing power parity in Hungary is carried out in Table 40. GDP development in Hungary is shown in Figure 13.

Table 40: GDP per capita of Hungary at purchasing power parity

Description	Reality			
Year	2013	2014	2015	
Index (EU28 = 100)	100	100	100	
Hungary	67	68	68	

Source: Eurostat, Statistics of European Commission

Graph 13: GDP development and prognosis in Hungary (Source: Eurostat, Statistics of European Commission)

GDP development analysis, including prognosis for 2017 and 2018 in Hungary, assumes a positive growth rate above 2 %. At the same time, there is a slight positive increase in purchasing power parity, which confirms the price stability in Hungary.

Table 41 provides an analysis of the development of investments in \in in railway infrastructure in Hungary in the period of 2013 – 2015.

Investment in infrastructure	2013	2014	2015
Investment subsidies in mill. ${f \epsilon}$			-
rail	8,288	26,388	67,895
Non-investment subsidies in mil. $ildsymbol{\epsilon}$		-	-
Rail – GYSEV	5,036	9,269	17,627
Rail – MÁV	212	136	144

Table 41: Development of investment in railway infrastructure in Hungary

Source: Members of RFC OEM from Hungary

The analysis of investments in rail transport in Hungary showed a successive increase. An increase in investment is expected also in the next period, as a significant part of railway infrastructure is included in international corridors.

Tables 42 and 43 contain data on selected economic and charge indicators of railway infrastructure separately for GYSEV and MÁV.

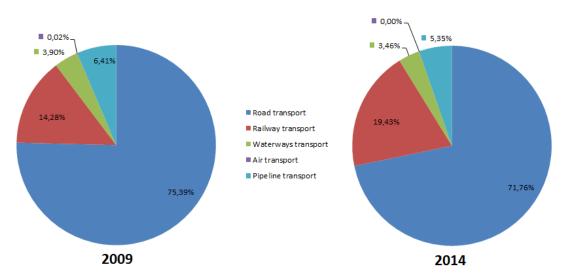
GYSEV

Table 42: Selected economic indicators of railway infrastructure on GYSEV network

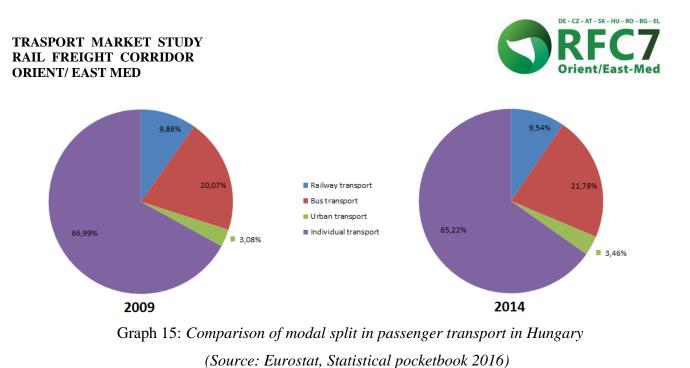
Indicators/Year	2013	2014	2015
Average amount of revenues (€) from carriers per 1 km of RFC OEM track for freight transport/year	15 677,24	14 875,11	17 923,46
Average amount of revenues (€) from carriers per 1 km of RFC OEM track for passenger transport/year	38 422,36	30 651,48	27 000,75
Average price (\in) of charge for use of railway infrastructure for standard trains on RFC corridor	2,26	2,02	1,86

Source: Member of RFC OEM for GYSEV from Hungary

MÁV


Table 43: Selected economic indicators of railway infrastructure on MÁV network

Indicators/Year	2013	2014	2015
Average amount of revenues (€) from carriers per 1 km of RFC OEM track for freight transport	2,18	2,28	2,39
Average amount of revenues (€) from carriers per 1 km of RFC OEM track for passenger transport	2,01	2,04	2,1
Average price (€) of charge for use of railway infrastructure for standard trains on RFC corridor	2,24	2,24	2,35


Source: Member of RFC OEM for MÁV from Hungary

B) Transport

Graphs 14 and 15 provide a graphical comparison of the modal split in Hungary in 2014 to 2009. The comparison is made in the period of 5 years giving sufficient time for the market response to modal split changes following measures to support rail transport within the EU.

Graph 14: Comparison of modal split in freight transport in Hungary (Source: listed in Appendix I)

The comparison of the modal split in Hungary showed a significant change in favour to rail freight traffic which is due to higher quality and more reliable services. On the contrary, there is a slight change in relation to rail passenger traffic.

Tables 44 and 45 contain an analysis of the development of transport performances in Hungary in the period of 2013 - 2015. Table 46 contains an analysis of the development of the number of railway undertakings providing railway infrastructure services in Hungary.

GYSEV

Transport mode	Carrier	Scope	Transp. Perform./Year	2013	2014	2015
	National comica	total	train- km in thous.	13,9	14	15
Passenger	National carrier	on RFC OEM	train- km in thous.	4,6	4,5	6,4
transport	Drivete comien	total	train- km in thous.	5004,7	4921,9	4960,4
	Private carrier	on RFC OEM	train- km in thous.	1308,8	1295,2	1282,1
		(train- km in thous.	0	0	0
	National carrier	total	gross ton-km in mill. *	0	0	0
		on RFC OEM	train- km in thous.	0	0	0
		OII KFC OEM	gross ton-km in mill. *	0	0	0
F 1 ()			train- km in thous.	1028,7	981,7	919,2
Freight transport		total	gross ton-km in mill. *	1066,9	999,1	916,4
	Private carrier		LOCO train- km in thous.	362,9	446,4	444,6
	r iivate caillei		train- km in thous.	595,1	586,4	591,6
		on RFC OEM	gross ton-km in mill. *	670,6	637,2	634,9
			LOCO train- km in thous.	158,4	185,7	205,5

Table 44: Transport performances in rail passenger and freight transport on GYSEV network

Source: Member of RFC OEM for GYSEV from Hungary

MÁV

Transport mode	Carrier	Scope	Transp. Perform./Year	2013	2014	2015
	National comien	total	train- km in thous.	76 100	78 740,1	78 915
Passenger	National carrier	on RFC OEM	train- km in thous.	24 988	26 354	26 956
transport	Private carrier	total	train- km in thous.	66,6	64,6	62,1
	r fivate carrier	on RFC OEM	train- km in thous.	31,6	31	29,8
		total	train- km in thous.	0	0	0
	National carrier	totai	gross ton-km in mill. *	0	0	0
		on RFC OEM	train- km in thous.	0	0	0
		OII KFC UEIVI	gross ton-km in mill. *	0	0	0
			train- km in thous.	16 180	16 976	17 079
Freight transport		total	gross ton-km in mill. *	19 660	20 740	20 812
			LOCO train- km in thous.	4 257	4 284,5	4 372,5
	Private carrier		train- km in thous.	7 349	8 050	8 686
		on RFC OEM	gross ton-km in mill. *	8 999	9 930	10 787
			LOCO train- km in thous.	1 520	1 691	1 772

Table 45: Transport performances in passenger and freight transport on MÁV network

Source: Member of RFC OEM for MÁV from Hungary

Table 46: Structure of rail carriers on the territory of Hungary

	Structure of RU's (number of carriers on RFC OEM)																			
			20)13			2014 2015													
		ional rier			ate ier	Total			onal rier	PrivateNationalPrivatecarrierTotalcarriercarrier					Total					
F	P	F+P	F	Р	F+P		F	Р	F+P	F	Р	F+P		F	Р	F+P	F	Р	F+P	
0	0	2	34	1	0	37	0	0	2	34	1	0	37	0	0	2	39	1	1	43

Source: Members of RFC OEM from Hungary

The analysis of transport performances in Hungary has shown a successive increase in both rail passenger and freight traffic. At the same time, there is an increase in the number of carriers in 2015 which is positively demonstrated in increase in transport performances. There is also a successive increase in transport performances on the lines included in the OEM corridor. This increase is mainly caused by international rail transit transport.

Table 47 contains an analysis of the order of performances on the lines included in the OEM corridor.

Table 47: Volume of capacity offer within RFC OEM for Hungary

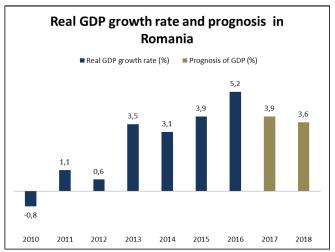
Capacity management by C-OSS on RFC OEM	Transport performance	2013	2014	2015
Volume of capacity offer for the annual timetable on RFC OEM	train-km in thous.	0	14 762	15 969
Volume of annual capacity requests via C-OSS on RFC OEM	train-km in thous.	0	0	1 377
Volume of reserve capacity offer on RFC OEM	train-km in thous.	10 211	7 866	8 206
Volume of reserve capacity requests via C-OSS on RFC OEM	train-km in thous.	0	1 329	1 386

Source: Members of RFC OEM from Hungary

Table 48 presents the development of the number of individual trains in international rail traffic according to divisions in the period of 2013 - 2015.

International freight trains request type comparison	Annual	Annual Late	Interim	Ad-hoc	Instant
Year			2013		
Number of international freight trains operated	5 787	7 279	17 832	5 918	26 201
Year			2014		
Number of international freight trains operated	13 981	5 520	13 970	5 582	24 061
Year			2015		
Number of international freight trains operated	9 721	9 343	12 589	5 476	26 494

Table 48: Number of international freight trains according to individual divisions


Source: Members of RFC OEM from Hungary

A complete analysis of the bottlenecks, the average running times and the charges on GYSEV and MÁV individual lines is given in Appendix D. Data given in the Appendix is based on a large amount of data. At the same time, Appendix D contains other important data provided by GYSEV and MAV infrastructure managers.

5.6 Romania

A) Economy

Based on the importance of GDP, GDP development in Romania is shown in the Figure below. An analysis of the development of GDP per capita at purchasing power parity is given in Table 49.

Graph 16: GDP development and prognosis in Romania (Source: Eurostat, Statistics of European Commission)

Table 49: GDP per capita of Romania at purchasing power parity

Description	Reality				
Year	2013	2014	2015		
Index (EU28 = 100)	100	100	100		
Romania	55	55	57		

Source: Eurostat, Statistics of European Commission

The GDP development analysis, including a prognosis for 2017 and 2018 in Romania, assumes a positive growth rate above 3 %. At the same time, there is no significant change in purchasing power parity, which confirms the price stability in Romania.

Table 50 contains an analysis of the development of investments (in \in) in rail transport in Romania in the period of 2013 – 2015. An analysis of the development of investments in lines included in the OEM corridor from external sources is carried out in Table 51 and from public resources in Table 52.

Table 50: Development of investment in railway infrastructure in Romania

Investment to infrastructure	2013	2014	2015
Investment subsidies in mill. €			
rail	343	339	327
Non – investment subsidies in mil. €	-	-	
rail	100	154	168

Source: Member of RFC OEM from Romania

Table 51: Amount of investment in railway infrastructure from external sources in Romania

Line included in DEC OEM		Year	
Line included in RFC OEM	2013	2014	2015
Frontiera – Curtici – Arad – Km 614	67,63	79,44	43,13
Km 614 – Simeria	0,06	0,00	0,00
Simeria – Coslariu	93,03	59,93	105,91
Coslariu – Sighisoara	89,76	124,44	90,26
Sighisoara – Brasov	0,00	0,00	0,03
Brasov – Predeal	0,61	4,11	2,02
Predeal – Campina	2,15	14,03	2,90
Campina – Bucuresti	0,00	0,00	0,00
Bucuresti – Fetesti	0,00	15,89	2,62
Fetesti – Constanta	3,90	0,90	8,49
Arad – Timisoara	0,00	0,00	0,00
Timisoara – Orsova	0,00	0,00	0,00
Orsova – Filiasi	0,00	0,00	0,00
Filiasi – Craiova	0,00	0,00	0,00
Craiova – Calafat	0,00	0,00	0,00
Calafat – Frontiera (RO/BG)	0,00	0,00	0,00
Frontiera – Episcopia Bihor	0,00	0,00	0,00
Episcopia Bihor – Coslariu	0,00	0,00	0,00
Simeria – Filiasi	0,00	0,00	0,00
Craoiva – Videle	0,00	0,00	0,00
Videle – Bucuresti	0,00	0,00	0,00
Videle – Giurgiu Nord	0,00	0,00	0,00
Giurgiu Nord – Frontiera	0,00	0,00	0,00
Total	257,15	298,74	255,36

Source: Member of RFC OEM from Romania

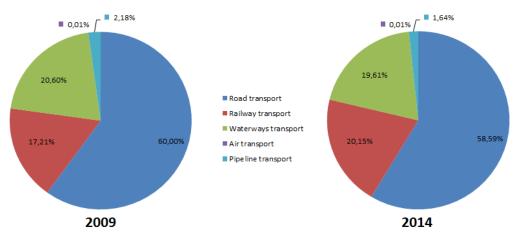
Line included in RFC OEM		Year	
Line included in RFC OEM	2013	2014	2015
Arad – Craiova	0,07	0,40	1,18
Episcopia Bihor – Coslariu	0,02	0,14	0,05
Simeria – Filiasi	0,85	0,26	0,00
Craiova - Caracal - Rosiori - Videle - Bucuresti	0,01	0,00	0,00
Videle – Giurgiu Nord	0,00	0,00	0,00
Giurgiu Nord – Frontiera	1,43	0,35	0,44
Total from State budget	2,38	1,15	1,66

Table 52: Amount of investment in railway infrastructure from state budget

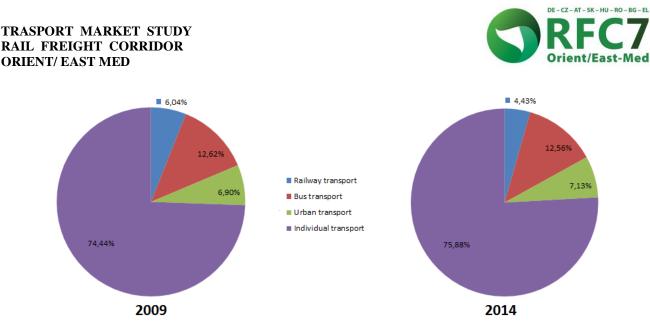
Source: Member of RFC OEM from Romania

The analysis of investments in rail traffic indicates stability. A significant increase in investment is allocated to the lines included in the OEM corridor; a similar trend is expected in the next planning period.

Table 53 contains an analysis of selected charge indicators of rail traffic in Romania.


Table 53: Selected indicators of rail traffic in Romania

Indicators/ Year	2013	2014	2015
Average amount of revenues (€) from carriers per 1 km of RFC OEM track for freight transport	3,55	3,55	3,55
Average amount of revenues (€) from carriers per 1 km of RFC OEM track for passenger transport	2,1	2,1	2,1
Average price (€) of charge for use of railway infrastructure for standard trains on RFC corridor	3,48	3,48	3,48


Source: Member of RFC OEM from Romania

B) Transport

Graph 17 and Graph 18 show a graphical comparison of the modal split in Romania in 2014 to 2009. The comparison is made in the period of 5 years giving sufficient time for the market response to modal split changes following measures to support rail transport within the EU.

Graph 17: Comparison of modal split in freight traffic in Romania (Source: listed in Appendix I)

Graph 18: Comparison of modal split in passenger traffic in Romania (Source: Eurostat, Statistical pocketbook 2016)

Modal split comparison in Romania showed a change in favour of rail freight traffic. On the contrary, there was a modal split change to the disadvantage of rail passenger traffic.

Table 54 contains an analysis of the development of transport performances in Romania in the period of 2013 - 2015. Table 55 contains an analysis of the development of the number of railway undertakings providing railway infrastructure services in Romania.

Table 54: Transport performances in rail passenger and freight traffic in 2013 – 2015

Transport mode	Carrier	Scope	Transp. Perform./Year	2013	2014	2015
	National carrier total tr		train- km in thous.	53 246	51 222	51 112
Passenger transport	Inational carrier	on RFC OEM	train- km in thous.	12 956	14 053	12 108
rassenger transport	Private carrier	total	train- km in thous.	3 621	4 252	3 756
	Filvate carrier	on RFC OEM	train- km in thous.	547	462	449
	National annia	total	train- km in thous.	10 326	9 814	9 482
		National carrier	total	gross ton-km in mill. *	12 335	11 921
	Inational carrier	on RFC OEM	train- km in thous.	3 582	3 778	3 738
Freight transport		OII KFC ÜEİVI	gross ton-km in mill. *	4 309	2 383	2 425
i ioigiit u uniop oit		total	train- km in thous.	12 083	12 623	14 336
	Private carrier	total	gross ton-km in mill. *	15 197	15 219	17 611
	i nvate carrier	on RFC OEM	train- km in thous.	4 192	4 859	5 652
		OII KI'C OEM	gross ton-km in mill. *	5 309	3 042	3 541

Source: Member of RFC OEM from Romania

Table 55: Structure of rail carriers on the territory of Romania

	Structure of RU's (number of carriers on RFC OEM)																			
	2013					2014						20)15							
		ional rier			ate ier	Total			onal rier			ate ier	Total			onal rier			ate ier	Total
F	Р	F+P	F	Р	F+P		F	Р	F+P	F	Р	F+P		F	Р	F+P	F	Р	F+P	
1	1	0	14	3	0	19	1	1	0	18	3	0	23	1	1	0	19	3	0	24

Source: Member of RFC OEM from Romania

The analysis of total transport performances in Romania shows a decrease in 2014 compared to 2013. In 2015, there was a slight increase in transport performances compared to 2014. A significant increase in transport performances is recorded on the OEM corridor lines with private carriers carrying out mainly international rail freight transport. The number of carriers carrying out rail traffic in Romania is slowly increasing. A specific analysis of transport performances on the individual lines in Romania is given in Appendix E.

Table 56 contains data on the number of individual types of freight trains in international rail transport.

International freight trains request type comparison	Annual	Annual Late	Interim	Ad-hoc	Instant
Year			2013		
Number of international freight trains operated	94 236	4 832	2 416	12 081	128 064
Year			2014		
Number of international freight trains operated	91 553	6 186	2 474	11 134	136 093
Year			2015		
Number of international freight trains operated	81 935	2 643	1 321	15 858	162 548

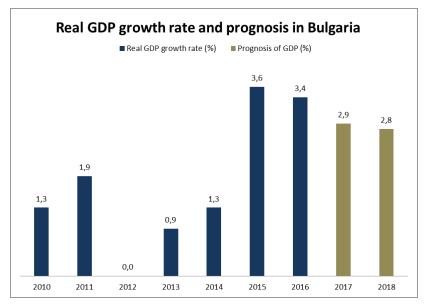
Table 56: Number of international freight trains for 2013 – 2015 years

Source: Member of RFC OEM from Romania

Table 57 contains a list of the bottlenecks on the lines included in the OEM corridor in Romania.

Table 57: Bottlenecks of railway infrastructure in Romania

Line section	Bottlenecks because of technical requirements	Reasons	Suggestions how to move bottlenecks
Simeria – Brașov	Vintu de Jos – Coşlariu	Rehabilitation works	After works finalization
Simeria – Brașov	Sighisoara – Aţel	Rehabilitation works	After works finalization
Simeria – Brașov	Micăsasa – Coșlariu	Rehabilitation works	After works finalization
Simeria – Brașov	Simeria – Vințu de Jos	Rehabilitation works	After works finalization
Bucuresti – Constanta	Fetești – Medgidia	Rehabilitation works	After works finalization
Craiova – Bucuresti	Chiajna- Grădinari	Rehabilitation works	After works finalization


Source: Member of RFC OEM from Romania

5.7 Republic of Bulgaria

A) Economy

Based on the importance of GDP, GDP development in Bulgaria is shown in the Figure below. At the same time, an analysis of GDP development per capita at purchasing power parity is carried out in Table 58.

Graph 19: GDP Development and prognosis in Bulgaria (Source: Eurostat, Statistics of European Commission)

Table 58: GDP per capita of Bulgaria at purchasing power parity

Description	Reality							
Year	2013	2014	2015					
Index (EU28 = 100)	100	100	100					
Bulgaria	46	46	47					

Source: Eurostat, Statistics of European Commission

The GDP development analysis, including a prognosis for 2017 and 2018 in the Republic of Bulgaria, assumes a positive growth rate above 2,5 %. At the same time, there is no significant change in purchasing power parity, which confirms the price stability in the Republic of Bulgaria.

B) Transport

In the following table, an analysis of transport and traffic performances of rail passenger and freight transport in the Republic of Bulgaria for the period of 2013 - 2015 is carried out.

Table 59: Analysis of development of transport and traffic performances in Bulgaria

Mode of rail transport	Indicator/Year	2013	2014	2015
	Train movement (thous. train-km)	20 042,5	20 452,9	20 904,5
Passenger transport	Passengers carried (thous. people)	26 071,5	24 627,3	22 526,3
	Traffic performance (mill. pkm)	1 825,8	1 702,3	1 552,1
	Train movement (thous. train-km)	6 543,5	6 879,2	7 658,6
Freight transport	Good carried (thous. tonnes)	13 538,9	13 690,9	14 635,1
	Traffic performance (mill. tkm)	3246,0	3439,2	3649,8

Source: National Statistical Institute (Bulgaria)

There is a gradual increase in transport performances in both examined indicators of rail freight transport. There is a decrease in performances in pkm and an increase in performances in train-km in rail passenger transport. A decrease in performances in pkm is affected by the decrease in the number of passengers, despite the gradual increase in transport opportunities.

In Table 60, an analysis of transport performances of rail freight transport on the lines included in the OEM corridor is carried out.

Table 60: Analysis of transport performances on the lines included in the OEM corridor

		Indicator/Year	2013	2014	2015
Freight	on RFC	train-km in thous.	3 548	4 020	4 360
transport	OEM	gross ton-km in mill.	3 800	4 331	4 741

Source: National Statistical Institute (Bulgaria)

The analysis of transport performances showed a successive increase in transport performances of rail freight transport on the lines included in the OEM corridor. The increase of performances is positively influenced by the railway infrastructure quality and its inclusion in the OEM corridor.

Table 61 contains an analysis of the development of the number of railway undertakings providing railway infrastructure services in Bulgaria.

Table 61: Structure of rail carriers on the territory of Bulgaria

Number of carriers with valid access contract/Year	2010	2011	2012	2013	2014	2015
passenger national	1	1	1	1	1	1
passenger private	0	0	0	0	0	0
freight national	1	1	1	1	1	1
freight private	5	8	9	9	11	11

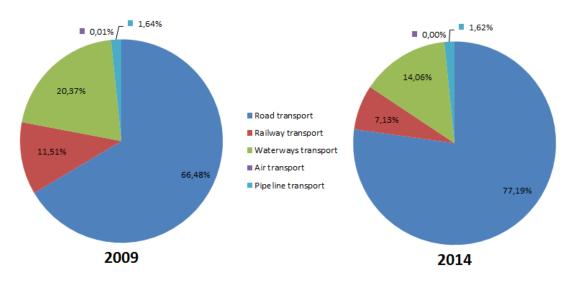
Source: National Statistical Institute (Bulgaria)

The analysis carried out in Table 61 showed a successive increase of the number of carriers providing rail freight services. At present, there is only one provider of rail passenger services in Bulgaria.

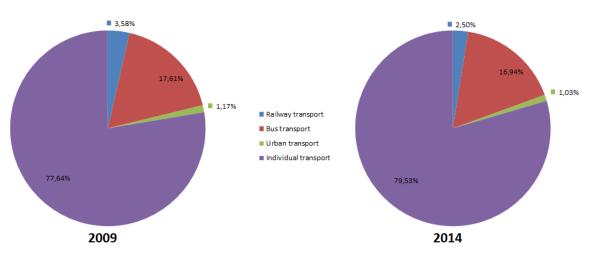
Table 62 provides an analysis of investment and non-investment state subsidies to the railway infrastructure for the period 2013 - 2015 in the Republic of Bulgaria.

Table 62: Analysis of state subsidies to railway infrastructure in the Republic of Bulgaria

71 476	
/1,4/0	127,106
69	69
	69


The analysis of selected qualitative indicators of rail freight transport in the Republic of Bulgaria on the individual lines is carried out in Table 63.

Line sections	Average transport time (min) between cross- border stations	Aveage transport time (min) on line included in RFC OEM	Average speed Nex (km/h)	Average speed of block train of combined transport (km/h)	Average speed Pn (km/h)
for the line	N/A	N/A	38,9	38,9	53,5
Ruse-Karnobat-Svilengrad	1045	1045	29,1	29,1	51,1
Kalotina West-Svilengrad	746	586	30	30	53
Vidin-Sofia-Kulata	856,4	856,4	33,7	33,7	53,15

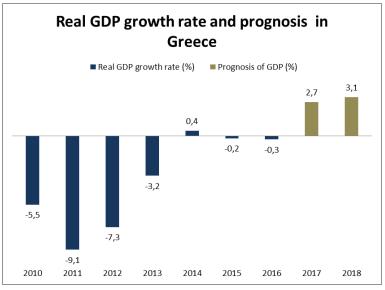

Table 63: Quantitative indicators of rail freight transport on NRIC lines

Source: NRIC

Graph 20 and Graph 21 show a graphical comparison of the modal split in the Republic of Bulgaria in 2014 to 2009. The comparison is made in the period of 5 years giving sufficient time for the market response to modal split changes following measures to support rail transport within the EU.

Graph 20: Comparison of modal split in freight transport in Bulgaria (Source: listed in Appendix I)

Graph 21: Comparison of modal split in passenger transport in Bulgaria (Source: Eurostat, Statistical pocketbook 2016)


The modal split comparison in the Republic of Bulgaria has demonstrated a change against rail freight and passenger transport in comparison with road transport. After Greece, the Republic of Bulgaria has the second lowest share of rail transport among the OEM corridor countries.

Other specific data concerning rail transport in the Republic of Bulgaria are given in Annex F.

5.8 Greece

A) Economy

Based on the importance of GDP, GDP development in Greece is shown in the Figure below. An analysis of the development of GDP per capita at purchasing power parity is carried out in Table 64.

Graph 22: GDP development and prognosis in Greece (Source: Eurostat, Statistics of European Commission)

Table 64: GDP per capita of Greece at purchasing power parity

Description	Reality						
Year	2013	2014	2015				
Index (EU28 = 100)	100	100	100				
Greece	72	70	68				

Source: Eurostat, Statistics of European Commission

The analysis of GDP development has shown negative values in the years under examination. However, the Greek economy assumes a growth in 2017 and 2018. At the same time, there is no decrease in purchasing power parity which negatively affects the real prices.

Table 65 contains an analysis of the development of investments (in \in) in rail traffic in Greece in the period of 2013 – 2015. An analysis of distribution of investments in railway infrastructure in Greece is carried out in Table 66.

Table 65: Development of investment in railway infrastructure in Greece

Investment to infrastructure	2013	2014	2015						
Investment subsidies in mill. €									
rail	147,06	173,29	257,4						
Non – investment subsidies in	mil. €	-	-						
rail	87	53	45						

Source: Member of RFC OEM from Greece

Table 66: Distribution of investment in railway infrastructure in Greece

Year	State investment	Infrastructure manager investment	European investment	Total
2013	N/A	9,06	138	147,06
2014	2,5	0,91	172,38	173,29
2015	8,5	1,66	247,24	257,4

Source: Member of RFC OEM from Greece

The analysis of investments in rail traffic in Greece has shown a successive increase. With respect to government's economy and optimization measures a significant decrease was recorded in non-investment subsidies.

There is data on investments within the lines included in the OEM corridor in Greece in Table 67.

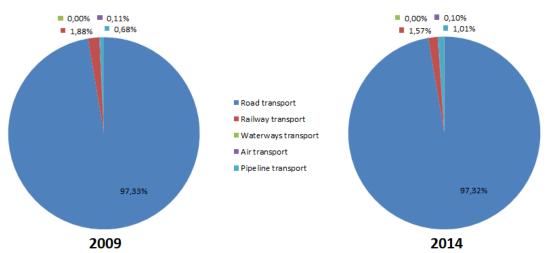
Table 67: Investment subsidies to railway lines included in RFC OEM

Line coation	Investment subsidies in mill.							
Line section	2013	2014	2015					
Athens – Thessaloniki – Promachonas	70	112	140					

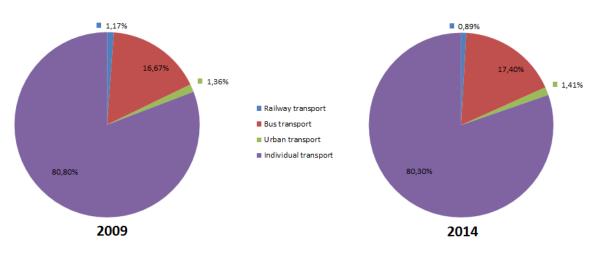
Source: Member of RFC OEM from Greece

Table 68 contains an analysis of selected charge indicators of rail traffic in Greece.

Table 68: Selected economic indicators of rail traffic in Greece


Indicators/Year	2013	2014	2015
Average amount of revenues (€) from carriers per 1 km of RFC OEM track for freight transport	N/A	N/A	677
Average amount of revenues (€) from carriers per 1 km of RFC OEM track for passenger transport	N/A	N/A	6 882
Average price (€) of charge for use of railway infrastructure for standard trains on RFC corridor	N/A	N/A	N/A

Source: Member of RFC OEM from Greece


B) Transport

Graph 23 and Graph 24 show a graphical comparison of the modal split in Greek in 2014 to 2009. The comparison is made in the period of 5 years giving sufficient time for the market response to modal split changes following measures to support rail transport within the EU.

Graph 23: Comparison of modal split in freight traffic in Greece (Source: listed in Appendix I)

Graph 24: Comparison of modal split in passenger traffic in Greece (Source: Eurostat, Statistical pocketbook 2016)

Modal split comparison in Greece has shown a change to the disadvantage of rail freight and passenger traffic. The highest share of road goods transport and individual motoring within the OEM corridor countries is in Greece.

Table 69 contains an analysis of the development of transport performances in Greece in the period of 2013 - 2015. Table 70 contains an analysis of the development of the number of railway undertakings providing railway infrastructure services in Greece.

Transport mode	Carrier	Scope	Transp. Perform./Year	2013	2014	2015
	National carrier	total	train- km in thous.	10 568	10 583	9 999
Passenger		on RFC OEM	train- km in thous.	6 0 2 6	6 235	5 290
transport	Private carrier	total	train- km in thous.	29	0	0
		on RFC OEM	train- km in thous.	0	0	0
	National carrier	(. (. 1	train- km in thous.	619	912	838
		total	gross ton-km in mill. *	543	842	806
		on RFC OEM	train- km in thous.	0	297	653
		OII KFC UEM	gross ton-km in mill. *	0	190	643
Freight transport		te te 1	train- km in thous.	0	0	0
		total	gross ton-km in mill. *	0	0	0
	Private carrier	on DEC OEM	train- km in thous.	0	0	0
		on RFC OEM	gross ton-km in mill. *	0	0	0

Table 69: Transport performances in rail passenger and freight traffic in 2013 – 2015

Source: Member of RFC OEM from Greece

Table 70: Structure of rail carriers on the territory of Greece

	Structure of RU's (number of carriers on RFC OEM)																			
	2013 2014				2015															
		onal rier			ate ier	Total			onal rier			ate ier	Total		NationalPrivatecarriercarrier			Total		
F	Р	F+P	F	Р	F+P		F	Р	F+P	F	Р	F+P		F	Р	F+P	F	Р	F+P	
0	0	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	1

Source: Member of RFC OEM from Greece

The analysis of total transport performances in Greece has shown a decrease in 2015 compared to 2014. The precise analysis of transport performances in Greece is given in Appendix G.

Table 71 provides a comparison of the average transport time by road and by rail on the individual sections.

Table 71: Average transport times by road and by rail on individual sections

	Transp	ort time
Line section	Average transport time by rail∆ (min)	Average transport time by truck (min)
		,
Ikonio Pireas – Thriassio	57,6	25
Thriassio – Athens	61,2	30
Athens – Thessaloniki	555,6	300
Thessaloniki – Strimonas	129	75
Strimonas – Promachonas	15	13
Strimonas – Alexandroupolis	361,8	13
Alexandroupolis – Ormenio	210	120

Source: Member of RFC OEM from Greece

Table 72 provides a comparison of charges for individual types of transport on the lines included in the OEM corridor.

Line section	Length	Container 40' 16,5-22t	Conver wagor	ntional ns 25t	
Line section	(km)	€/UTI 1	CLASS1	CLASS2	
		t/UIII	€/t	€/t	
Triassio – Kulata	677,00	594	37,6	32,42	
Triassio – Svilengrad	1 153,00	888	57,65	49,7	
Thriassio – Thessaloniki	532,00	501	31,5	27,17	
Thessaloniki – Kulata	144,00	251	12,81	11,06	
Thessaloniki – Svilengrad	621,00	568	36	30,95	
Thessaloniki – Alexandroupolis	444,00	432	28	24	

Table 72.	Comparison	of type	transports o	on the	lines i	ncluded i	n RFC	OEM
<i>1 ubie 72</i> .	Companson	<i>oj iype</i>	in unsports c	<i>m</i> me	imes i	пстией і	n M C	OLM

Source: Member of RFC OEM from Greece

Additional data concerning rail freight transport by group of goods is given in Appendix J. The graphical representation of gradient in individual member states of RFC OEM and description of gradient in Germany is shown in Appendix K. Summary information on the railway lines included in RFC OEM is given in Appendix L: Technical data on the lines is in xls.

5.9 Summary of presented and analysed data

On the basis of the collected and evaluated statistical economic, transport and traffic data in the OEM corridor countries, it is possible to conclude the following:

- GDP growth in individual countries,
- positive economic development, increase in living standards,
- higher movement of population,
- higher demand for transport services,
- requirements for higher level of transport services, e.g. reliability, shorter transport time,
- pressure to modernize the lines,
- pressure to remove bottlenecks of railway infrastructure,
- demand for ecological transport need for electrification of lines,
- increase in transport performances of the rail system,
- shift of transport performances from road to rail,
- higher performances of international rail transport,
- promotion of intermodal transport,

2017

- need to improve the quality of intermodal transport services,
- fair and non-discriminatory allocation of railway infrastructure capacity,
- increase in rail investment,
- need for harmonisation of charges.

Based on these conclusions, there are the following opportunities and possibilities to meet the objectives of the OEM corridor:

- making maximum use of EU and national funding opportunities for rail investments and ensuring effective and timely absorption of available funding,
- improving planning of infrastructure works and including incentives in tendering of works for minimised impact on traffic operations,
- focusing financial resources on removal of bottlenecks,
- electrification of lines leading to more efficient train operations and lower social costs of transport,
- market-oriented capacity and capacity products and efficient management of provision and allocation of railway infrastructure capacity,
- huge market potential for modal shift if today's existing problems and shortcomings of the corridor can be solved,
- upgrading of railway infrastructure of the corridor to higher standards with regard to parameters relevant for freight traffic, such as train length, axle and meter load, speed; swift implementation of TEN-T infrastructure minimum requirements or higher on continuous line sections,
- effectively addressing border crossing issues,
- harmonisation of operational rules,
- harmonisation of charges within the countries of the corridor on a competitive level,,
- effective provision of information.

Routing itself and the state of the development of the corridor countries create several possibilities to meet its basic objectives. The analyses carried out have shown sufficient potential to maintain and increase the importance of the corridor within the European transport infrastructure. As an increase in the demand for international rail freight services is expected, it is necessary to continuously improve the quality of railway infrastructure and the services of the OEM corridor.

6 PROGNOSIS OF TRANSPORT PERFORMANCE DEVELOPMENT

Transport performances on railway infrastructure are the most important data to explain the demand for rail services. Several aspects affecting infrastructure, quality of services and external costs result from transport performances. It is necessary to know the development of transport performances in order to form the objectives and the subsequent strategy of the OEM corridor. The development of transport performances is assumed on the basis of the prognosis that includes three scenarios for the OEM corridor: realistic, optimistic and pessimistic.

Bases for prognosis:

- 1. Model used for prognosis: AAA algorithm with exponential alignment. AAA algorithm is a software capable for making prognosis based on the provided data.
- 2. Confidence interval: 95 %.
- 3. Time span of prognosis: 2018 2025 (8 years).
- 4. Examined indicator: transport performances in rail passenger and freight traffic.
- 5. Input data: Transport performance (train km, gross ton km) made on the lines of individual infrastructure managers statistical data of infrastructure managers.
- 6. Presentation of results: in tabular form for each scenario separately.

Prognosis risks:

- 1. Economic cycle recession, period of crisis during forecasted period.
- 2. Inaccuracy of provided data.
- 3. Insufficient interval of data provided.
- 4. Low level of investment in railway infrastructure inadequate state of railway infrastructure required by customers (e.g. capacity, frequent possessions).
- 5. Decrease in quality of rail system services e.g. unreliability, rigidity, high prices.
- 6. Change in transport infrastructure charging increase in rail charges and decrease in charges for other modes of transport.
- 7. Significant shift of transport performances to other modes of transport.

Table description:

Table 73 – realistic scenario, prognosis of the development of total transport performances of rail system in individual countries and on lines included in the OEM corridor.

Table 74 – optimistic scenario, prognosis of the development of total transport performances of rail system in individual countries and on lines included in the OEM corridor.

Table 75 – pessimistic scenario, prognosis of the development of total transport performances of rail system in individual countries and on lines included in the OEM corridor.

	Trans. Mode	Scope	Transp. Perform./ Year	2018	2019	2020	2021	2022	2023	2024	2025
			train-km in thous.	302324	306025	309727	313429	317131	320833	324534	328236
Germany	FT	total	gross ton-km in mill.	118	120	122	124	125	127	129	131
		on RFC OEM	train-km in thous.	2200	2138	2198	2257	2312	2371	2430	2498
	РТ	total	train-km in thous.	928482	932917	937353	941788	946223	950658	955094	959529
	F I	on RFC OEM	train-km in thous.	1361	1363	1365	1367	1369	1371	1373	1375
		total	train-km in thous.	36993	37512	38030	38548	39067	39585	40103	40621
	FT	totai	gross ton-km in mill.	34840	35203	35565	35928	36290	36653	37015	37378
Czech	1.1	on RFC OEM	train-km in thous.	8235	8407	8580	8753	8925	9098	9271	9443
Republic		on Ki C OLM	gross ton-km in mill.	7964	8058	8152	8246	8340	8433	8527	8621
	DT	total	train-km in thous.	122094	120885	119677	118468	117260	116052	114843	113635
PT	F I	on RFC OEM	train-km in thous.	20838	20808	20779	20749	20720	20690	20661	20631
	L'IL	1	train-km in thous.	41433	42004	42575	43147	43718	44289	44861	45432
A 4	FT	total	gross ton-km in mill.	45811	46577	47343	48110	48876	49643	50409	51175
Austria	DT	1	train-km in thous.	98515	99484	100454	101424	102394	103364	104334	105303
	РТ	total	gross ton-km in mill.	29534	29929	30324	30719	31114	31509	31903	32298
		_	train-km in thous.	14932	15219	15505	15792	16079	16365	16652	16939
		total	gross ton-km in mill.	18848	19253	19659	20064	20470	20876	21281	21687
	FT		train-km in thous.	3474	3662	3851	4039	4228	4416	4605	4793
G 1 11		on RFC OEM	gross ton-km in mill.	3531	3718	3905	4092	4279	4466	4653	4840
Slovakia		-	train-km in thous.	35840	37269	38699	40129	41559	42989	44418	45848
	DT	total	gross ton-km in mill.	10857	11644	12431	13218	14006	14793	15580	16368
	РТ		train-km in thous.	6149	6241	6333	6425	6517	6609	6701	6793
		on RFC OEM	gross ton-km in mill.	1922	1962	2002	2042	2082	2122	2162	2202
		total	train-km in thous.	18484	18907	19330	19753	20176	20599	21022	21444
	FT	totai	gross ton-km in mill.	22361	22903	23444	23985	24527	25068	25609	26150
Hungary	1.1	on RFC OEM	train-km in thous.	9951	10620	11289	11957	12626	13295	13964	14632
i fuligar y		OII KPC OEM	gross ton-km in mill.	12304	13181	14059	14937	15815	16693	17571	18449
	РТ	total	train-km in thous.	85639	87115	88592	90069	91545	93022	94498	95975
	11	on RFC OEM	train-km in thous.	29343	30344	31345	32346	33347	34348	35349	36349
		4-4-1	train-km in thous.	24348	24999	25649	26300	26951	27602	28253	28904
	FT	total	gross ton-km in mill.	30360	31313	32265	33218	34171	35124	36076	37029
Demain	ГІ	on REC OEM	train-km in thous.	10212	11025	11837	12649	13462	14274	15086	15899
Romania		on RFC OEM	gross ton-km in mill.	3528	3485	3354	3287	3024	2986	2911	2751
	РТ	total	train-km in thous.	53767	52736	51705	50675	49644	48613	47583	46552
	P1	on RFC OEM	train-km in thous.	12468	12112	11757	11402	11047	10692	10336	9981
	L'IL	1	train-km in thous.	8159	8699	9239	9779	10319	10859	11399	11939
Bulgaria	FT	total	gross ton-km in mill.	3849	4051	4252	4453	4654	4856	5057	5258
	PT	total	train-km in thous.	21330	21760	22189	22618	23048	23477	23906	24336
		total	train-km in thous.	995	1119	1243	1367	1491	1615	1739	1863
	ET	total	gross ton-km in mill.	981	1126	1270	1415	1560	1705	1849	1994
Chesses	FT	on REC OFM	train-km in thous.	1009	1365	1721	2077	2433	2789	3145	3501
Greece		on RFC OEM	gross ton-km in mill.	1096	1549	2002	2455	2908	3361	3814	4267
	DT	total	train-km in thous.	9774	9497	9221	8944	8668	8392	8115	7839
	PT	on RFC OEM	train-km in thous.	5071	4749	4427	4104	3782	3460	3138	2815

Table 73: Prognosis – realistic scenario

 $FT-Freight\ transport$

 $PT-Passenger \ transport$

	Trans. Mode	Scope	Transp. Perform./ Year	2018	2019	2020	2021	2022	2023	2024	2025
			train-km in thous.	304444	308187	311979	315833	319755	323744	327797	331906
Germany	FT	total	gross ton-km in mill.	120	122	124	126	128	130	133	135
y		on RFC OEM	train-km in thous.	2205	2134	2202	2266	2330	2396	2460	2521
		total	train-km in thous.	931244	935733	940286	944920	949641	954451	959343	964309
	PT	on RFC OEM	train-km in thous.	1375	1377	1380	1383	1386	1390	1394	1399
		4-4-1	train-km in thous.	37178	37700	38226	38757	39295	39838	40387	40940
	FT	total	gross ton-km in mill.	35030	35397	35767	36143	36526	36914	37308	37707
Czech	I'I	on RFC OEM	train-km in thous.	8459	8636	8818	9007	9203	9406	9616	9831
Republic		on Kre oew	gross ton-km in mill.	8244	8343	8449	8563	8686	8817	8957	9105
	РТ	total	train-km in thous.	122340	121136	119938	118748	117565	116390	115222	114061
		on RFC OEM	train-km in thous.	20936	20909	20884	20861	20842	20826	20813	20802
	FT	total	train-km in thous.	42471	43063	43678	44324	45003	45715	46459	47230
Austria		totai	gross ton-km in mill.	47067	47858	48678	49535	50431	51368	52342	53350
11000110	РТ	total	train-km in thous.	98803	99779	100761	101751	102751	103760	104777	105803
			gross ton-km in mill.	29598	29994	30391	30791	31192	31596	32001	32408
		total	train-km in thous.	15111	15401	15695	15995	16300	16611	16927	17248
	FT		gross ton-km in mill.	18919	19326	19734	20145	20558	20973	21391	21810
		on RFC OEM	train-km in thous.	3641	3833	4028	4229	4435	4646	4862	5083
Slovakia			gross ton-km in mill.	3698	3888	4082	4281	4486	4695	4910	5129
		total	train-km in thous.	37000	38452	39932	41445	42995	44582	46203	47856
	PT		gross ton-km in mill.	11544	12344	13161	13998	14856	15737	16638	17557
		on RFC OEM	train-km in thous.	6381	6478	6580	6688	6804	6928	7058	7195
			gross ton-km in mill.	1994	2036	2079	2124	2172	2222	2274	2328
		total	train-km in thous.	18893	19324	19764 24071	20217 24654	20682 25257	21160 25878	21650 26517	22152 27172
	FT		gross ton-km in mill. train-km in thous.	22951 9980	23504 10650	11320	11991	12663	13335	14009	14683
Hungary		on RFC OEM	gross ton-km in mill.	12328	13207	14086	14965	12003	16727	17609	18491
		total	train-km in thous.	86991	88494	90028	91602	93218	94878	96578	98315
	PT	on RFC OEM	train-km in thous.	29783	30793	31812	32845	33891	34952	36025	37111
			train-km in thous.	25128	25794	26479	27185	27917	28674	29454	30255
		total	gross ton-km in mill.	32045	33031	34055	35129	36257	37438	38669	39946
	FT		train-km in thous.	10276	11089	11904	12721	13540	14361	15184	16009
Romania		on RFC OEM	gross ton-km in mill.	6259	5899	5402	5284	5185	5071	4932	4875
		total	train-km in thous.	54221	53199	52188	51190	50206	49237	48281	47338
	PT	on RFC OEM	train-km in thous.	14181	13859	13577	13345	13167	13045	12973	12947
			train-km in thous.	8415	8960	9511	10069	10635	11210	11792	12382
Bulgaria	FT	total	gross ton-km in mill.	3859	4061	4263	4464	4667	4869	5072	5275
	PT	total	train-km in thous.	21354	21784	22214	22645	23077	23510	23943	24377
		total	train-km in thous.	1207	1335	1468	1607	1753	1906	2065	2230
	FT	total	gross ton-km in mill.	1174	1323	1476	1634	1799	1970	2147	2329
Greece	1.1	on RFC OEM	train-km in thous.	1009	1365	1721	2077	2433	2789	3145	3501
Gitte			gross ton-km in mill.	1096	1549	2002	2455	2908	3361	3814	4267
	РТ	total	train-km in thous.	10102	9833	9570	9317	9075	8843	8621	8408
	••	on RFC OEM	train-km in thous.	5737	5428	5134	4859	4606	4374	4162	3968

Table 74: Prognosis – optimistic scenario

FT - Freight transport

 $PT-Passenger \ transport$

RFC7 Orient/East-Med

TRASPORT MARKET STUDY RAIL FREIGHT CORRIDOR ORIENT/ EAST MED

	Trans. Mode	Scope	Transp. Perform./ Year	2018	2019	2020	2021	2022	2023	2024	2025		
			train-km in thous.	300204	303864	307475	311025	314507	317921	321272	324566		
Germany	FT	total	gross ton-km in mill.	116	118	119	121	123	124	126	127		
Germany		on RFC OEM	train-km in thous.	2194	2132	2183	2235	2287	2334	2386	2441		
		total	train-km in thous.	925720	930102	934419	938656	942805	946866	950844	954749		
	РТ	on RFC OEM	train-km in thous.	1347	1349	1350	1351	1352	1352	1352	1351		
			train-km in thous.	36809	37324	37834	38339	38838	39332	39819	40302		
	ET	total	gross ton-km in mill.	34650	35009	35363	35712	36055	36392	36723	37049		
Czech	FT	on RFC OEM	train-km in thous.	8011	8179	8342	8498	8648	8790	8926	9055		
Republic		ON KFC UEM	gross ton-km in mill.	7685	7773	7855	7929	7994	8050	8097	8137		
	РТ	total	train-km in thous.	121847	120634	119415	118189	116955	115714	114465	113209		
	r I	on RFC OEM	train-km in thous.	20739	20708	20674	20637	20598	20555	20509	20460		
	ET	total	train-km in thous.	40394	40945	41472	41969	42433	42863	43263	43635		
A	FT	total	gross ton-km in mill.	44554	45296	46009	46685	47321	47917	48476	49001		
Austria	DT	total	train-km in thous.	98226	99190	100148	101097	102037	102968	103890	104804		
	PT	total	gross ton-km in mill.	29471	29864	30257	30647	31035	31421	31806	32188		
		4-4-1	train-km in thous.	14753	15036	15315	15589	15857	16120	16377	16629		
	ET	total	gross ton-km in mill.	18777	19181	19583	19984	20382	20778	21172	21564		
	ГІ	FT on RFC OEM	train-km in thous.	3306	3491	3673	3849	4020	4186	4347	4503		
Slovakia		OII KFC ÜEİVI	gross ton-km in mill.	3364	3548	3728	3903	4073	4237	4397	4552		
510 vakia	РТ	total	train-km in thous.	34680	36087	37467	38813	40123	41395	42633	43840		
		totai	gross ton-km in mill.	10170	10943	11701	12439	13155	13849	14523	15178		
		on RFC OEM	train-km in thous.	5917	6005	6087	6162	6230	6291	6345	6392		
		on Kre oew	gross ton-km in mill.	1849	1888	1925	1959	1992	2022	2050	2076		
	FT	FT		total	train-km in thous.	18076	18491	18896	19290	19670	20037	20393	20737
			totai	gross ton-km in mill.	21771	22301	22817	23316	23796	24257	24701	25129	
Hungary	11	on RFC OEM	train-km in thous.	9921	10590	11257	11924	12590	13254	13918	14581		
mungary		on Ri e olivi	gross ton-km in mill.	12279	13156	14033	14909	15784	16659	17533	18406		
	РТ	total	train-km in thous.	84287	85737	87156	88536	89872	91165	92418	93635		
		on RFC OEM	train-km in thous.	28904	29896	30878	31847	32803	33744	34672	35588		
		total	train-km in thous.	23567	24203	24820	25415	25985	26530	27052	27553		
	FT	total	gross ton-km in mill.	28675	29595	30475	31307	32085	32809	33483	34112		
Romania		on RFC OEM	train-km in thous.	10149	10960	11770	12577	13383	14187	14989	15789		
			gross ton-km in mill.	797	707	657	549	638	601	578	518		
	РТ	total	train-km in thous.	53313	52273	51223	50160	49082	47990	46884	45766		
		on RFC OEM	train-km in thous.	10754	10366	9937	9459	8926	8339	7700	7015		
	FT	total	train-km in thous.	7903	8438	8967	9488	10002	10507	11005	11495		
Bulgaria			gross ton-km in mill.	3839	4040	4241	4442	4642	4842	5041	5241		
	PT	total	train-km in thous.	21306	21735	22164	22591	23018	23444	23870	24295		
		total	train-km in thous.	783	903	1018	1127	1229	1324	1413	1497		
	FT		gross ton-km in mill.	788	929	1065	1196	1321	1439	1552	1660		
Greece		on RFC OEM	train-km in thous.	1009	1365	1721	2077	2433	2789	3145	3501		
			gross ton-km in mill.	1096	1549	2002	2455	2908	3361	3814	4267		
	РТ	total	train-km in thous.	9445	9162	8872	8572	8261	7940	7609	7270		
		on RFC OEM	train-km in thous.	4405	4070	3719	3349	2958	2546	2113	1663		

Table 75: Prognosis – pessimistic scenario

FT - Freight transport

PT – Passenger transport

Based on the prognosis, the following main conclusions can be stated:

- increase in the performances of international rail freight transport by about 3-4% per year, mainly due to higher quality of services provided, flexibility, reliability and economic development,
- increase in rail passenger transport performances, affected primarily by economic development and an increase in the quality of services,
- resulting savings in social costs,
- increase in transport performances on lines included in the OEM corridor, in particular on the principal line sections following the implementation of the projects aiming at improving the infrastructure standards,
- higher quality of communication and information technologies required in particular on the cross-border sections having longer waiting times for freight trains than 2 hours,
- higher reliability of rail system following the achievement of TEN-T minimum infrastructure requirements and elimination of hindering factors for seamless interoperability, including cross-border sections whereby the target of 2 hours' waiting time is desired to be achieved as per the Action Programme of 2016,
- it is necessary to put some pressure on the harmonisation of charges for rail and road in order to achieve the desired modal shift to rail.

7 COMPARATIVE ANALYSIS OF RAIL AND ROAD FREIGHT TRANSPORT WITHIN THE OEM CORRIDOR

The comparison serves to compare the transport time and charges within the transport routes of the OEM corridor parallel to the TEN-T routes. The comparison of these two indicators will provide information on charge and time competitiveness of international rail freight transport. These indicators contribute significantly to transport service quality and its price.

Input assumptions of comparative analysis:

- legislative restrictions on running time and following equivalent period of rest according to the European Agreement concerning work of crews of vehicles engaged in international road transport,
- average speed in international road goods transport,
- average speed of trains in international rail freight transport (OEM),
- average railway infrastructure charges (OEM),
- 4 model transport routes,
- charging systems of individual countries in road goods transport,
- distances in kilometres of individual model routes.

Table 76 provides a comparative analysis of the average running time between international rail and road freight transport for proposed model transport routes. In addition to the running time itself, the average running time includes other technological, border and forwarding times required by individual modes of transport.

Route	km in road transport	km in rail transport	Average transport time by truck	Average transport time by rail
Pardubice – Burgas*	1 616	1 740	46 h 39 min	46 h 48 min
Sopron – Plovdiv*	1 128	1 391	28 h 48 min	36 h 48 min
Bratislava – Volos**	1 391	1 816	42 h 42 min	47 h 18 min
Rostock – Trnava	959	951	26 h	25 h

Table 76: Comparative analysis of average running times

*road transport route passes through the territory of the Republic of Serbia

**road transport route passes through the territory of the Republic of Serbia and the FYROM

The comparative analysis of the average running time showed a shorter technological time of transport in international road freight transport, except for the last model route. However, the analysis showed that the total technological time of transport in rail freight transport is approaching road freight transport. Such an approach results from several measures of the EU and national

governments in the process of liberalization of rail freight services market. At the same time, the services and measures of the OEM freight corridor contribute to the shortening of the total running time. It is very important to continue with removing barriers that hinder faster transport in international rail transport. Shortening technological transport times reduces the social costs of transport and contributes to the higher competitiveness of rail freight. The process of interoperability of the rail system within EU countries helps remove barriers, too. In case of transport of bulk substrates, rail freight can be considered to be competitive in total transport time as the road infrastructure does not have sufficient capacity for the individual transport of bulk substrates.

Table 77 provides a comparative analysis of transport infrastructure charges between rail and road freight transport for proposed model transport routes. The charge is calculated for road freight vehicle with a total weight of 40 t and weight of goods of 22 t, for freight train with a total weight of 1 600 t and weight of goods of 1 000 t. The analysis does not include any supplementary charges in road and rail transport.

	Road	freight tran	sport	Rail freight transport			
Route	charge 40 t vehicle	charge in €/km	charge in €/km/tonne	charge 1 600t train	charge in €/km	charge in €/km/tonne	
Pardubice – Burgas*	157,182	0,118	0,0054	4383,3	2,519	0,0025	
Sopron – Plovdiv*	145,128	0,165	0,0075	3250,2	2,337	0,0023	
Bratislava – Volos**	181,975	0,146	0,0066	5205,7	2,867	0,0029	
Rostock – Trnava	184,896	0,217	0,0099	2883,7	3,032	0,0031	

Table 77: Comparative analysis of charges

*road transport route passes through the territory of the Republic of Serbia

**road transport route passes through the territory of the Republic of Serbia and the FYROM

The comparative analysis of charge burden in Table 77 showed higher charges per 1 km of route for rail freight. However, charge comparison per one tonne of goods transported/route km showed a lower charge burden for international rail freight. Lower charges in rail freight per one tonne of goods transported occur only in case of larger amount of goods transported as the charges in road freight transport are less dependent on weight. With a decrease in the amount of goods, the charges per tonne of goods in rail transport are significantly increasing. The positive result of the analysis was influenced by EU and national measures. The main measures were the liberalization of transport infrastructure charges and the reduction of charges based on marginal costs. The charge comparison showed sufficient competitiveness of international rail freight transport against road freight transport, particularly in the transport of larger amount of goods.

The Figure below shows a comparison of some challenges rail freight transport faces compared to road freight transport.

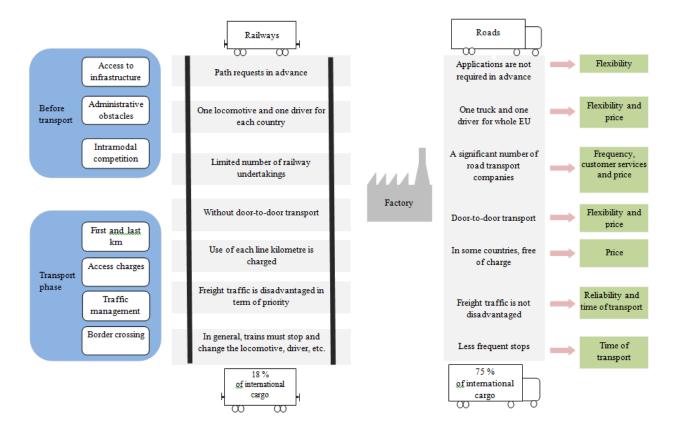


Figure 12: Comparison of challenges of rail freight to road transport (Source: European Court of Auditors)

8 ANALYSIS OF CONNECTING RFC OEM TO TURKEY

Based on the Regulation (EU) No 1315/2013 of the European Parliament and of the Council of 11 December 2013 on Union guidelines for the development of the trans-European transport network, it is necessary, within RFC OEM, to evaluate the inclusion of the relevant railway lines of Turkey in RFC OEM.

Turkey is an Eurasian country that lies in Asia Minor and on part of the Balkan Peninsula. Most of the country is located in Asia. Turkey is washed by four seas and it is adjacent to several countries. In the European part it is adjacent to Greece and Bulgaria and in the Asian part it is adjacent to Armenia, Azerbaijan, Georgia, Iran, Iraq and Syria.

8.1 Transport-economic analysis

Area:	783 562 km ²
Population:	74 816 000 (estimate 2009)
Capital city:	Ankara, population 5 045 083 (2013)
Currency:	Turkish Lira (TRY)/100 kuruş, 1 \in = about 3,3424 TRY

Human Development Index: 0,750 (2014), 94. Place/world =Medium Human Development Index

It is necessary to examine the connection of the Turkish railway infrastructure to rail freight corridor OEM with regard to transport potential, taking into account EU policy towards third countries. It is possible to evaluate the transport potential from and to Turkey based on the macroeconomic and transport analyses of Turkey.

Table 78: GDP development and production in Turkey

Year	2000	2005	2010	2011	2012	2013	2014	2015
GDP (in billions USD)	267	483	731	775	789	823	799	718
GDP growth rate (%)	6,77	8,4	9,16	8,77	2,13	4,19	2,91	4
GDP production (inter-year growth in %):								
Agriculture	7,08	7,18	2,36	6,05	3,12	3,48	-2,05	N/A
Industry	6,23	8,82	13,88	10,03	1,6	4,08	3,53	N/A
Services	6,61	8,57	7,64	8,76	2,55	5,54	4,08	N/A
Production	6,88	8,21	13,83	10	1,72	3,72	3,65	N/A
GDP production (% GDP):								
Agriculture	11,31	10,8	9,46	9,01	8,84	8,33	8,01	8,6
Industry	31,33	28,46	26,39	27,47	26,67	26,61	27,11	26,5
Services	57,36	60,74	64,15	63,52	64,49	65,06	64,88	64,9
Import of goods and services (% GDP)	23,1	25,4	26,8	32,6	31,5	32,2	32,1	30,8
Export of goods and services (% GDP)	20,1	21,9	21,2	24	26,3	25,6	27,9	28

Source: International Bank for Reconstruction and Development

The data on GDP development in Turkey, listed in Table 78, confirmed a decline in GDP since 2013 whereby GDP in 2013 was on the highest level for the whole monitored period. The expected GDP growth rate has always been in positive values whereby the estimated GDP growth was not actually achieved. Failure to achieve GDP growth was mainly caused by lower production and agriculture production. The services have the largest share in GDP in Turkey that form more than 60 % of GDP since 2005. This fact is primarily due to the significant global tourism of Turkey. The lowest share is recorded in agriculture where it reaches a level slightly above 8 % of GDP. The import of goods has been decreasing with respect to the GDP since 2011 and the export of goods and services is increasing with slight variations. Despite these facts, Turkey imports more than it exports, which negatively affects the GDP.

A forecast of GDP development in Turkey according to the International Monetary Fund for the period 2016 - 2021 is shown in Table 79.

Table 79: Forecast of GDP development in Turkey according to International Monetary Fund

YEAR	2016	2017	2018	2019	2020	2021
GDP (in billions USD)	751	791	834	883	935	986
GDP growth rate (%)	3,8	3,4	3,5	3,5	3,5	3,5
		-	•			

Source: International Monetary Fund

Based on the forecast of GDP by 2021 according to the International Monetary Fund we can assume a gradual growth of GDP in the individual years. The expected economic growth would result in a higher demand for goods and services thereby the growth of transport performances will be directly affected.

The assessment of the connection of Turkish railways and freight corridor requires an analysis of the import and export of goods to EU member states. In the analysis, it is particularly important to mention the import and export of goods to and from countries whose railway lines are included in the RFC OEM, including the Federal Republic of Germany. Such analysis will provide a view of the transport and economic flows between Turkey and EU countries, whereby it will be possible to partially evaluate, the transport potential.

The analysis of the import of goods to EU countries from Turkey for the period 2002 - 2015 in millions \notin is shown in Table 80.

Country/Year	2002	2005	2008	2011	2012	2013	2014	2015
TOTAL EU 28 countries	24 662	36 230	46 288	48 820	48 822	50 654	54 440	61 603
Austria	635	1 140	1 376	1 586	1 448	1 341	1 373	1 423
Bulgaria	415	887	1 396	1 107	1 189	1 510	1 468	1 496
Czech Republic	248	252	421	641	616	635	778	851
Germany	6 577	7 443	8 757	10 513	10 650	10 946	11 892	12 821
Greece	645	958	1 727	1 157	1 108	1 127	1 206	1 331
Hungary	259	370	417	411	456	602	569	749
Romania	592	1 574	2 762	1 903	1 837	1 871	1 953	2 284
Slovakia	84	119	224	310	412	368	454	475
TOTAL RFC OEM countries	9 454	12 744	17 080	17 627	17 716	18 400	19 693	21 430

Table 80: Import of goods to the EU from Turkey in millions ϵ

Source: European Commission – Trade – Export Helpdesk – Statistics

The analysis of goods import to EU countries from Turkey for the period 2002 - 2015 in thousands tons is shown in Table 81.

Country/Year	2002	2005	2008	2011	2012	2013	2014	2015
TOTAL EU 28 countries	35 400	25 522	27 198	25 598	22 450	24 408	24 884	27 334
Austria	377	516	573	591	484	458	433	465
Bulgaria	4 012	1 010	1 359	1 279	1 241	1 562	1 484	1 542
Czech Republic	879	71	118	236	149	158	186	198
Germany	1 677	1 682	2 059	2 413	2 262	2 314	2 505	2 644
Greece	1 306	1 135	2 2 2 2 0	1 629	1 392	1 368	1 358	1 546
Hungary	898	152	196	149	145	175	175	200
Romania	5 319	1 163	2 393	1 716	1 553	1 487	1 554	1 554
Slovakia	428	52	90	87	92	95	93	91
TOTAL RFC OEM countries	14 896	5 781	9 010	8 100	7 317	7 617	7 788	8 240

Table 81: Import of goods to EU from Turkey in thousands tons

Source: European Commission – Trade – Export Helpdesk – Statistics

The analysis of goods import to EU from Turkey listed in Tables 80 and 81 demonstrated a progressive increase in goods import from Turkey to EU countries. The progressive increase is primarily due to the economic growth of EU countries which becomes evident by the increased demand of consumers and EU countries for goods produced also in Turkey. The progressive increase of goods import to the EU from Turkey in million€ was recorded also in RFC OEM member states. The highest value of goods is exported to the Federal Republic of Germany and the least to the Slovak Republic. The analysis also showed a gradual decrease in goods import to RFC OEM member states from Turkey in thousands tons. The most tons of goods were directed at the Federal Republic of Germany and the least at the Slovak Republic. The different trend in goods

import to RFC OEM member states from Turkey, listed in Tables 80 and 81, is due to the import of goods with higher added value and lower weights.

The analysis of goods import to Turkey from the EU for the period 2002 - 2015 in million \in is listed in Table 82.

Country/Year	2002	2005	2008	2011	2012	2013	2014	2015
TOTAL EU 28 countries	26 633	44 620	54 476	73 275	75 489	77 683	74 719	79 129
Austria	578	788	1 034	1 306	1 274	1 290	1 256	1 464
Bulgaria	565	988	1 339	1 733	1 958	2 004	2 058	1 977
Czech Republic	289	420	563	975	1 323	1 664	1 625	1 721
Germany	7 502	12 398	15 014	20 066	20 022	21 378	19 490	22 801
Greece	368	743	903	1 882	2 952	3 208	3 266	1 711
Hungary	278	747	920	1 350	1 212	1 346	1 289	1 455
Romania	611	1 761	2 195	2 787	2 454	2 545	2 361	2 155
Slovakia	93	246	631	768	851	986	767	791
TOTAL RFC OEM countries	10 284	18 092	22 598	30 868	32 046	34 421	32 112	34 074

Table 82: Goods import to Turkey from EU in millions ϵ

Source: European Commission – Trade – Export Helpdesk – Statistics

The analysis of goods import to Turkey from the EU for the period 2002 - 2015 in thousands tons is listed in Table 83.

Country/Year	2002	2005	2008	2011	2012	2013	2014	2015
TOTAL EU 28 countries	109 136	30 588	32 409	41 740	45 715	46 717	47 048	44 938
Austria	232	326	415	508	497	500	487	538
Bulgaria	48 115	2 806	2 892	3 273	3 534	3 782	4 118	4 008
Czech Republic	763	160	129	181	257	289	257	289
Germany	2 509	3 091	3 245	4 473	4 580	4 384	3 924	4 006
Greece	611	1 393	1 331	2 485	3 785	4 590	5 113	3 058
Hungary	4 820	396	221	329	282	348	316	318
Romania	31 516	5 207	4 747	5 168	4 361	4 362	4 293	3 695
Slovakia	2 651	314	422	288	384	506	378	257
TOTAL RFC OEM countries	91 216	13 694	13 402	16 705	17 680	18 761	18 885	16 169

 Table 83: Goods import to Turkey from EU in thousands tons

Source: European Commission – Trade – Export Helpdesk – Statistics

The analysis of goods import to Turkey from EU countries carried out in Table 82 showed an increase in goods import in mill. €. For the whole monitored period the goods in the highest value in total were imported in 2015. The value increase of goods import to Turkey was recorded from RFC OEM member states, too. The analysis of goods import to Turkey in thousands tons carried

out in Table 83 showed a significant decrease in 2015 compared to 2002. The analysis of goods import to Turkey in thousands tons from RFC OEM member states showed a decrease. Most of the goods were imported to Turkey from the Federal Republic of Germany and the Republic of Bulgaria. The least of goods were imported to Turkey from the Slovak Republic. The different trend in goods import from RFC OEM member states to Turkey, listed in Tables 82 and 83, is due to the import of goods with higher added value and with lower weights.

Based on the analysis of imports and exports of goods between Turkey and the RFC OEM Member States, we can conclude:

- increasing the added value of imported and exported goods between Turkey and the EU countries,
- decreasing the transport performances of freight transport between Turkey and the EU countries,
- Demand for fast, reliable and safe international transport, in particular on the route between Turkey and the Federal Republic of Germany.

8.2 Transport infrastructure and international transport

In addition to the analysis of macroeconomics and transport indicators, the analysis of transport infrastructure in the territory of Turkey is necessary, too. The selected indicators concerning the railway infrastructure and the border crossings as well as the infrastructure of other transport modes will be shown in the following sections. At the same time, an analysis of modal split, transport performances and international rail freight transport will be carried out. The Turkish State Railways have 1 435 mm standard gauge and except the railway lines of independent traction of 8 947 km length they have railway lines of dependent traction with 25 kV, 50 Hz AC power supply system of 3 854 km length. Figure 13 is the graphical representation of part of the Turkish State Railways network with parts of the railway network in neighbouring countries - Greece and Bulgaria. The railway border crossing between Turkey and Bulgaria is between the border crossing stations Kapikule (TR) – Svilengrad (BG). The maximum line speed between these border crossing stations is 85 km/h. The distance from state border of Turkey with Bulgaria to the railway border crossing station is 1.27 km and from the railway border crossing station it is 19.4 km. The rail border crossing between Turkey and Greece is between the border crossing stations Uzunköprű (TR) – Pythion (EL). In Figure 13, the electrified lines are shown in blue and non-electrified lines are shown in green. Thin lines in the Figure represent single track lines while thicker lines double track and multiple track lines.

Figure 13: Graphical representation of railway border crossings (Source: www.trainsofturkey.com)

Important projects for the development of rail transport include the Marmaray tunnel linking the rail network in the European and the Asian part of Turkey under the Bosphorus strait. Construction of the Murmaray tunnel is part of the Murmaray project, which begins in Halkali in the European part of Istanbul, passes through the Marmaray tunnel and ends at Gebze in the Asian part of Istanbul. This route has a total length of 76 km with 13 km under the surface of which the tunnel tube under the Bosphorus strait has a length of 1.4 km. The tunnel was opened on October 29, 2013. It is a double-track tunnel with three-track extension. The tunnel is intended for highspeed trains, suburban trains, passenger trains and freight trains, except for the transport of dangerous goods and the carriage of goods in open wagons. The freight trains run through the tunnel when the suburban trains do not run. The graphical representation of the Marmaray project is shown in Figure 14.

Figure 14: Graphical representation of Marmaray project (Source: www.Railturkey.org)

For Turkey, as maritime country, maritime transport is a strategic and important mode of transport. There are several ports in Turkey. The port of Tekirdağ lies in the European part of Turkey while the Port of Haydarpaşa lies in the Asian part of Istanbul. It is important to link the transport infrastructure with the ports. In addition to the above mentioned ports, the terminals of intermodal transport are of great importance, such as at Kapikule, Corlu, Halkali and Cerkezkoy in the European part of Turkey. The graphical representation of the north-western part of Turkey with its capital and the mentioned ports marked with a red dot and terminals of combined transport marked with an orange dot are shown in Figure 15.

Figure 15: Graphical representation of logistics centres and ports in northwest Turkey (Source: www.trainsofturkey.com)

Tekirdağ

The port of Tekirdağ is located on the northern coast of the Marmara Sea. The port operator is TDI (Turkish Maritime Facilities Inc.). The length of the pier for ship loading/unloading is in the range of 176 m – 356 m for the container terminal and for the main freight terminal the piers have a length of 327 m and 343 m. The net storage area of the Container terminal is 35 000 m². The distance of this terminal to the borders of Turkey with the Republic of Bulgaria (Kapikule/ Svilengrad) is 169 km and the distance to the borders of Turkey with Greece (Uzunköprü / Pythion) is 132 km.

Year	20	012	20)13	2014		
Description	loaded	unloaded	loaded unloaded		loaded	unloaded	
Bulk goods (t)	140 159	1 229 510	114 643	1 353 197	33 576	545 322	
Liquid goods (t)	0	0	80	146 814	0	51 980	
General type of goods (t)	91 409	104 393	52 439	100 139	3 893	30 060	
Total (t)	231 568	1 333 903	167 162	1 600 150	37 469	627 362	
Container (quantity)	0	0	3 278	3 432	2 068	2 390	

Table 84: Amount of loaded and unloaded goods in tonnes and number of containers at Tekirdağ

Source: Republic of Turkey Prime Ministry Privatization Administration 2016

At the Port of Tekirdağ, during the years 2012 - 2014, the unloading volume significantly exceeded the loading volume. In 2014, the volume of unloaded goods was 627 362 t, i.e. a decrease of 706 541 t compared to 2012. The loaded goods have a decreasing trend. In 2014, the loading volume was 37 469 t, which is a reduction of 194 099 t compared to 2013. The amount of loaded and unloaded containers has also a decreasing trend. In 2014, 1 210 containers less were loaded than in the previous year and 1 042 containers less were unloaded in 2014 compared to 2013. An overview of the amount of loaded and unloaded goods in tonnes is given in the previous table.

Haydarpaşa

The Port of Haydarpaşa is located in the Asian part of Istanbul and in the northeast of the Marmara Sea. The port operator is the General Directorate of the Turkish State Railways. There are two train ferries, tow boats for servicing the heavier ships in the port. Container handling is performed by 4 quayside gantry cranes, mobile gantry cranes and stackers. The storage capacity of containers is 426 000 TEU per year and the maximum capacity of equipment is 655 000 TEU per year. The port of Haydarpaşa occupies an area of land of 343 420 m².

Year	2012		2013		20)14	2015		
Description	loaded	unloaded	loaded	unloaded	loaded	unloaded	loaded	unloaded	
General type of goods (1000 t)	605	1033	1912	1682	2128	1961	1415	1876	
Total (1000 t)	1	638	35	3594		4089		3291	

Table 85: Amount of loaded and unloaded goods in 1000 t in Port of Haydarpaşa

Source: Turkish State Railways, Annual Statistics, 2011-2015

The port of Haydarpaşa observed an increasing trend in 2012 - 2014, which was changed by a sudden decrease in 2015. Compared to 2014, the total volume of loaded and unloaded goods decreased by 798 thousand tonnes in 2015. A significant decrease was recorded in the volume of loaded goods when the amount of loaded goods decreased by 703 thousand tonnes in 2015 compared to 2014. Within the volume of unloaded goods, there was a decrease by 85 thousand tonnes in 2015 compared to the previous year. Detailed information on unloading and loading in the port of Haydarpaşa is given in table above.

Selected intermodal transport terminals

Kapikule

The intermodal transport terminal and the Kapikule border station are the most important connecting points at the Turkish-Bulgarian border as they link Europe with Turkey. All container trains as well as most rail transport pass through the Kapikule terminal. The border crossing between Turkey and the Republic of Bulgaria passes just through the Kapikule terminal and is connected with the cross-border station and also with the intermodal transport terminal on the Bulgarian side of Svilengrad. The distance to the Turkish-Bulgarian border is 2 km. The distance from the terminal to the railway crossing with Greece (Uzunköprű (TR) / Pythion (EL)) is 98 km by rail. The terminal has 15 tracks and no container storage area.

Corlu

The Corlu Terminal is located at the 154 km of the Istanbul – Kapikule railway. Due to its unfavourable location, this terminal is mainly used for loading/unloading of dangerous goods. The distance of this terminal to the Turkish-Bulgarian border is 166 km and to the Turkish-Greek border 128 km. The terminal has 15 tracks and no open storage area.

Halkali

The Halkali Terminal is one of the most important freight terminals located in the European side of Istanbul. The distance of this terminal to the Turkish-Bulgarian border is 278 km and to the Turkish-Greek border 240 km. The Halkali terminal has 29 tracks, a container storage area and closed warehouses.

Cerkezkoy

The Cerkezkoy Terminal is located at the 115 km of the Istanbul – Kapikule railway. It substituted the Halkali Terminal when it was closed. The distance of this terminal to the Turkish-Bulgarian border is 190 km and to the Turkish-Greek border 152 km. There is no open storage area in the terminal.

Table 86 shows the development of railway infrastructure construction as well as transport performances achieved on the Turkish State Railways network for the period 2002 - 2015.

Indicators/Year	2002	2005	2008	2012	2013	2014	2015
Length of railway lines in km	10 925	10 973	11 005	12 008	12 097	12 485	12 532
Non-electrified lines	8 843	8 699	8 723	8 792	8 793	8 737	8 678
Electrified lines	2 082	2 274	2 282	3 216	3 304	3 748	3 854
High-speed trains	N/A	N/A	N/A	888	888	1 213	1 213
Principal lines in km	8 671	8 697	8 699	9 642	9 718	10 087	10 131
Non-electrified lines	6 919	6 777	6 771	6 802	6 796	6 757	6 708
Electrified lines	1 752	1 920	1 928	2 840	2 922	3 330	3 423
Transport performances thousands train-km	39 085	45 395	42 760	35 332	28 945	43 006	41 873
passenger trains	24 408	26 284	23 339	17 319	14 585	21 196	22 173
mixed trains	589	520	677	526	292	585	656
freight trains	13 795	18 129	18 455	17 244	13 918	20 596	18222
service trains	293	462	289	243	150	629	822
Transport performances in mill. Tkm	7 224	9 152	10 739	11 670	11 177	11 992	10 474
national	6 613	7 996	9 185	10 473	10 241	11 106	9736
international	553	1 081	1 367	750	509	495	442
Baggage freight	3	1	1	N/A	N/A	N/A	N/A
Administrative freight	55	74	186	447	427	391	296
Amount of goods in thousands tonnes	14 616	19 195	23 491	25 666	26 597	28 747	25 878
Ports and piers in thousands tonnes	36 252	44 649	30 406	12 934	16 074	17 758	N/A
loaded	17 882	19 904	14 386	7 182	8 978	9 434	N/A
unloaded	18 370	24 745	16 020	5 752	7 096	8 324	N/A

Table 86: Selected indicators of railway transport in Turkey

Source: Turkish State Railways

The development of the length of operated railway lines on the Turkish State Railways network, listed in Table 86, shows an increasing trend. In 2015, the total length of railway lines was 12 532 km, which represents an increase by 14.7 % compared to the year 2002. Of the total length of lines, non-electrified lines in 2015 represent 69.2 %.

A variable development was recorded for non-electrified lines in the monitored period. The length development of electrified lines has an increasing trend in the analysed period.

The transport performances, listed in Table 86 in thousands train-km, achieved on the Turkish State Railways network, had a variable trend. In 2015, an increase in total transport performances in thousands train-km by 7.1 % was shown compared to 2002. A significant increase in performances occurred in 2014 and 2015, compared to 2013. The transport performance in rail freight transport in 2015 was at the level of 18 222 thousands train-km, thus reached the level of the performances of the years 2005 and 2008. Nevertheless, a decrease in transport performances by 11.5% occurred compared to 2014.

The analysis of transport performances development in millions tonne-km has shown an increasing trend from 2002 to 2014, while a decrease in these performances was noticed in 2015. In partial split, domestic transport had the greatest share. From 2008 to 2015, a gradual decrease in performances was noticed in international transport. The analysis of the amount of goods transported in tonnes confirmed about the same development as the analysis of transport performances in tonne-km. The development of handling operations port – rail transport confirmed a growth of handling operations from 2012 to 2014. However, compared to 2005, there is a decrease of handling operations by 39.8 %.

In Tables 87 and 88, an analysis of modal split development in Turkey for the years 2000-2013 is carried out.

Veen	Roa	d	Ra	il	Maritime		Ai	r	Total nkm	
Year	pkm	%	pkm	%	pkm	%	pkm	%	Total pkm	
2000	185681	95,9	4240	2,2	56	0,03	3555	1,84	193532	
2002	163327	96,1	3939	2,3	39	0,02	2706	1,59	170011	
2005	182152	95,3	3661	1,9	1240	0,65	3992	2,09	191045	
2012	258874	91,5	3006	1,1	1459	0,52	19731	6,97	283070	
2013	268178	90,5	3020	1,0	1667	0,56	23357	7,88	296222	
2014	276073	89,8	3458	1,1	1806	0,59	26204	8,52	307541	
2015	290734	89,2	3708	1,1	1836	0,56	29790	9,14	326068	

Table 87: Modal split of passenger transport in millions passenger-km in Turkey

Note: pkm- passenger kilometres

Source: TURKSTAT, Summary transport statistics

Year	Road		Rail		Maritime		Ai	r	Total	
i cai	tkm	%	tkm	%	tkm	%	tkm	%	tkm	
2001	151421	86,9	7558	4,3	15001	8,61	285	0,16	174265	
2005	166831	91,3	9152	5,0	6439	3,52	392	0,21	182814	
2012	216123	88,6	11670	4,8	16223	6,65	N/A	N/A	244016	
2013	224048	88,7	11177	4,4	17312	6,86	N/A	N/A	252537	
2014	234492	89,5	11992	4,6	15572	5,94	N/A	N/A	262056	
2015	244329	89,8	10474	3,9	17204	6,32	N/A	N/A	272007	

Table 88: Modal split of freight transport in millions tonne-km in Turkey

Note: tkm- tonne kilometres

Source: TURKSTAT, Summary transport statistics

The modal split in passenger transport showed the largest share of road transport with 89.2% in 2015. In comparison of the year 2000 with the year 2015, the share of road transport decreased by 6.7%. The share of road transport decreased as a result of the change of the modal split in favour of air transport. The share of air transport is higher by 7.3% in 2015 than in 2000 when the share of air transport reached 1.84%. The share of rail transport in 2015 was 1.1%, which represents a decrease by 1.1% compared to 2000. In the period 2012 - 2015, the share of rail transport at the level around 0.56% during the years 2012 - 2015. Globally, an increase in transport performances of passenger transport is recorded in the monitored period.

The modal split of freight transport confirmed a high share of road goods transport at the level of 89.8 % in 2015. The transport performance in road goods transport did not change significantly in the monitored period and it varies around the share level of 89 %. The share of modal split in rail freight transport is 3.9 % in 2015 and it has a rather decreasing trend. The comparison of modal split of freight transport in Turkey has shown a variable share of maritime transport. The analysis of the transport performance of freight transport confirmed a gradually increasing trend.

Within Turkey, it is necessary, in addition to railway infrastructure, to analyse also the development of infrastructure of other modes of transport. Transport infrastructure development in Turkey for the period 2007 - 2014 is shown in Table 89.

DE-C2-AT-SK-HU-RO-BG-EL RFC7 Orient/East-Med

TRASPORT MARKET STUDY RAIL FREIGHT CORRIDOR ORIENT/ EAST MED

Indicator/Year	2007	2009	2010	2011	2012	2013	2014
Length of roads	350 708	362 660	367 263	370 276	385 748	388 666	236 671
national roads	31 333	31 271	31 395	31 372	31 375	31 341	31 280
provincial road	30 579	30 948	31 390	31 558	31 880	32 155	32 474
municipal roads	286 888	298 405	302 398	305 227	320 366	323 043	170 762
highways	1908	2 036	2 080	2 119	2 127	2 127	2 155
Length of pipelines:	13 218	14 750	14 944	15 566	N/A	N/A	N/A
petroleum pipeline	3 065	3 065	3 038	3 038	N/A	N/A	N/A
for transport of natural gas	10 153	11 685	11 906	12 528	N/A	N/A	N/A
Number of seaports	178	179	182	181	N/A	N/A	N/A
Number of airports	43	45	46	47	N/A	N/A	N/A

Table 89: Transport infrastructure of Turkey

Source: TURKSTAT, Summary transport statistics

The total length of roads in Turkey in 2014 was 236 671 km. Compared to 2007 when the total length was 350 708 km, the total length reduced by 114 037 km, which represents a reduction by 32.5 %. The municipal roads, that have been cancelled or reclassified to another category, are the main reason for such a significant reduction of the total length. In the same period, an increase by 1 895 km occurred in the provincial roads. The total length of highways increased from 2007 to 2014 by 247 km. The condition of municipal roads decreased in 2014 by 116 126 km compared to 2007. An opposite trend – reduction of road length – is recorded in road infrastructure compared to rail transport. The development of pipelines length has an increasing trend which is affected by the construction of gas pipelines. The development of airports was affected primarily by the growing demand for air transport services due to an expanding tourism.

The performances in international rail freight transport in thousands tonnes and thousands tonne-km are shown in the following Table 90. The analysis of performances is aimed at international transport between Turkey and TEA members (Europe – Asia tariff for Freight Transportation) and international transport between Turkey and CMO members (Conference of Middle East Railways).

Ir	nternationa	al rail freig	ht transpo	rt in thous	ands tonne	es
Transpo	ort/Year	2011	2012	2013	2014	2015
ТЕА	Export	602	481	419	429	579
IEA	Import	1 273	1 091	1 015	871	1051
СМО	Export	581	402	159	246	222
CMO	Import	84	138	98	105	100
	Export	1 183	883	578	675	801
Total	Import	1 357	1 229	1 113	976	1151
	Transit	15	11	21	28	12
Int	ernational	rail freigh	t transport	t <mark>in thousa</mark> i	nds tonne-	km
Transpo	ort/Year	2011	2012	2013	2014	2015
ТЕА	Export	206 587	112 026	8 5774	75 564	111 545
ILA	Import	347 156	230 342	183 714	129 067	174 001
CMO	Export	389 590	353 384	182 996	217972	118 908
СМО	Import	33 077	42 542	31 340	34 072	22 774
	Export	596 177	465 410	268 770	293 536	230 453
Total	Import	380 233	272 884	215 054	163 139	196 775
	Transit	15 002	11 206	24 867	38 170	15 006

Table 90: International rail transport performances in Turkey

Note: TEA – Traffic between Turkey and member countries of the Europe – Asia Tariff for Freight Transportation

CMO – Traffic between member countries of the Conference of MIDDLE East Railways

Source: Turkish State Railways,

http://en.tcdd.gov.tr/files/istatistik/20112015yillik.pdf

The TEA members include railway infrastructure managers of the countries of Romania, the Republic of Bulgaria, the Syrian Arab Republic, the Republic of Albania, the Republic of Iraq, the FYROM, the Islamic Republic of Iran, the Republic of Turkey, Greece, Montenegro, the Republic of Bosnia and Herzegovina and the Republic of Serbia. Import predominates within international rail freight transport between Turkey and TEA members. The transport performances of import in thousands tonnes decreased by 17.4% from 2011 to 2015. The export between TEA members and Turkey listed in thousands tonnes recorded a slighter decrease as the performances in 2015 decreased by 3.8% compared to 2011.

The Middle East area includes Bahrain, Cyprus, Egypt, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syria, Turkey, United Arab Emirates, Yemen. The transport performances in international rail freight transport in thousands tonnes between the member states of the Conference of Middle East Railways and Turkey are in export comparable to export with TEA members in the years 2011 and 2012. The transport performances in thousands tonnes within export decreased in 2015 compared to 2011 by 61.8 %. The decrease may be the result of processing from own resources and a minimization of import or supply from other countries which are not members of the mentioned associations.

The analysis of transport performances of international rail transport between Greece and Turkey is listed in Table 91.

Mode of	2011			2013			2014			2015		
transport	freight wagons	tonnes	tonne-km	freight wagons	tonnes	tonne- km	freight wagons	tonnes	tonne- km	freight wagons	tonnes	tonne-km
Transit	8 144	236 262	17 308 838	3	142	90 041	7	394	250 413	1	36	23 056
to Turkey	N/A	N/A	N/A	51	2 435	258 899	25	492	273 230	N/A	N/A	N/A
from Turkey	17	280	130 761	N/A	N/A	- N/A	106	3 067	3 169 194	164	8 195	8 157 639
Total	8 161	236 542	17 439 599	54	2 577	348 940	138	3 953	3 692 837	165	8 2 3 1	8 180 695

Table 91: Transport performances by rail between Greece and Turkey

Source: OSE

The transport performances carried out in international rail transport showed a largely variable trend. Maximum performances were recorded in 2011; these were the performances of international transit transport. In 2015, 8231 tonnes were transported from Turkey to Greece and transit was only at the level of 36 tonnes. The analysis of transport performances of international rail transport between the Greece and Turkey showed very low transport performances.

Based on the analytical findings in Tables 78 – 91 we can conclude the following concerning the connectivity of Turkey with RFC OEM:

- Turkey upgrades and electrifies its railway network and plans further transport infrastructure development in the future,
- high transport potential has been identified in Turkey,
- achieved high share of freight transport by road,
- low share of transport performances of rail freight,
- potential for rail freight is not used,
- perspective of growth of transport performances in international rail transport,
- the cross-border connection between Turkey and Bulgaria is a single-track,
- the lines included in RFC OEM, which connect the railway infrastructure with the Turkish railway infrastructure, are currently not electrified, however electrification of the line from Plovdiv to the Bulgarian border station Svilengrad in ongoing.

8.3 Agreements between EU and Turkey

In 1963, the European Union and Turkey signed an Association Agreement which was aimed to promote trade and economic relations. From 31.12.1995, based on the decision of the Association Council, a customs union between the EU and Turkey was set up. Although the customs union covers trade with industry goods but it does not include agricultural products (except

for processed agricultural commodities), services and public procurement. Moreover, Turkey should, under the rules of the customs union, harmonize several key areas with the acquis communautaire, especially industry standards. Turkey is also part of the EUROMED group. The Turkish legislation is currently partially harmonized while all customs and quantitative restrictions on imports of industrial products from EU countries were cancelled. The single internal market, however, will cancel still existing non-tariff barriers as well as other technical barriers to the movement of goods, particularly in the agriculture sector.

The right to free transit

The right to free trade also includes the right to free transit through the territory of the EU, EEA and Turkey. After joining the EU, products, even non-European productions, can be transported freely throughout its territory.

The accession of Turkish to the EU is uncertain at present.

8.4 Formulation of conclusions and recommendations

Based on the overall assessment of the RFC OEM connection to the Turkish railway infrastructure there are several benefits and opportunities for international rail freight transport:

- possibility of changing the modal split in favour of rail freight transport and to the disadvantage of road goods transport,
- potential especially in the development of intermodal transport,
- shorter waiting time at the border,
- overall shorter transport time,
- rail can be used as depot during transport,
- lower social costs in case of transport by rail,
- reduction of negative external costs of transport,
- lower congestion due to the shift of transport performances to rail,
- increase in revenues for the use of railway infrastructure,
- increase in revenues for other services provided by the infrastructure manager,
- investment in railway infrastructure,
- higher interest in rail services from consignors, forwarders and carriers.

The benefits of the RFC OEM connection to the Turkish railway infrastructure are based on research findings listed in the sub-chapters 8.1, 8.2 and 8.3. On the basis of the research of the problems in question we can state that the connection of the RFC OEM railway infrastructure to the Turkish railway infrastructure may bring several benefits for the Member States, society, transport,

RFC7 Orient/East-Med

TRASPORT MARKET STUDY RAIL FREIGHT CORRIDOR ORIENT/ EAST MED

customers, railway undertakings and the RFC OEM itself. Therefore, we recommend the improvement of the cross-border railway infrastructure and a more effective cooperation. A priority should be a reduction of the waiting time at the border.

A wish for enhancement of the cooperation between Turkish IM and RFC OEM has also been signalled by the Railway Advisory Group of RFC OEM.

- . In order to achieve the benefits we propose to take the following measures and procedures:
- to reduce the charges for trains transporting goods from and to Turkey,
- in operational management to prefer trains transporting goods from and to Turkey,
- to examine the possibility of introducing and subsidizing regular freight trains of combined transport system RO – LA (technological, technical and economic evaluation),
- to electrify railway infrastructure belonging to RFC OEM relevant for traffic form and to Turkey. On Bulgarian territory NRIC is working on the electrification of the section between Plovdid and Svilengrad.
- to ensure integration of information systems,
- to develop activities aiming to generate and attract more traffic between RFC OEM and Turkey,
- integration of signalling systems,
- to adapt the railway infrastructure to 740 m train length,
- Establishing procedures for regular reporting to the RFC OEM Management and Executive Boards by a bilateral Bulgarian-Turkish cooperation group between the IMs, Ministries and authorities of both countries aimed at initiating measures to solve the problems at the BG/TK border and taking measures to promote, where appropriate, an exchange between TCDD and RFC OEM Management Board on issues related to traffic between Turkey and RFC OEM. Article 14 of Directive 2012/34/EU shall be always respected as regards of bilateral cooperation.
 - to take measures to promote, where appropriate, an exchange between TCDD and RFC
 OEM Management Board on issues related to traffic between Turkey and RFC OEM
 - Closely cooperate with the Railway Advisory Group of RFC OEM in order to better address the hindering factors for the traffic crossing the BG/TK border.

9 TRANSPORT POTENTIAL OF THIRD COUNTRIES

An important aspect of the development and transport importance of the OEM corridor is the acquisition of new transports. New transport opportunities need to be acquired also from countries outside the corridor and EU member states. A significant potential within new transports was demonstrated from/to Turkey. Based on the acquisition of new transports, an analysis of transport potential of the countries of Central Asia and Caucasus region, so-called third countries belonging to TRACECA (Transport Corridor Europe – Caucasus – Asia) corridor, was carried out. The TRACECA corridor includes:

- Armenia,
- Azerbaijan,
- Bulgaria OEM member,
- Georgia,
- Iran,
- Kazakhstan,
- Kyrgyzstan,
- Moldova,
- Romania OEM member,
- Tajikistan,
- Turkey separate chapter,
- Ukraine,
- Uzbekistan.

Table 92 contains a summary of the basic data on the analysed countries of Central Asia and the Caucasus region.

Country	Total area (km ²)	Population	Currency	Currency rate to EUR	Human Development Index	Total length of railways in km (gauge in mm)	Total length of roads
Armenia	29 800	3 009 800	AMD (Dram)	539,194	0,743	845 (1 520)	7 637
Azerbaijan	86 600	3 651 000	AZN (Manat)	1,902	0,759	2 918 (1 520)	abo 29 000
Georgia	64 420	3 729 635	GEL (Lari)	2,682	0,769	1 576 (1 520), 100 (914)	ca 20 000
Iran	1 648 195	79 110 000	IRR (Rial)	36 262,9	0,774	12 998 (1 435)	192 685
Kazakhstan	2 717 300	17 540 000	KZT (Tenge)	348,861	0,794	15 333 (1 520)	189 000
Kyrgyzstan	199 951	6 019 480	KGS (Som)	75,934	0,664	417 (1 520)	ca 34 000
Moldova	33 843	3 986 000	MDL (Lei)	20,4301	0,699	1 151 (1 520)	12 730
Tajikistan	143 100	8 482 000	TJS (Somoni)	9,8917	0,627	621 (1 520)	ca 30 000
Ukraine	603 628	45 426 200	UAH (Hrivna)	29,3925	0,743	21 640 (1 520), 201 (1 435)	172 400
Uzbekistan	448 978	31 025 500	UZS (Sum)	4 292,2	0,701	4 669 (1 520)	84 400

Table 92: Overview of Basic Data

Source: Available statistical data – scientific research

Table 93 provides an analysis of GDP development in the analysed countries in the period of

2000 - 2016.

Table 93:	Overview	of GDP	development
-----------	----------	--------	-------------

	Year	2000	2005	2010	2014	2015	2016
	GDP (in billions USD)	1,9	4,9	9,3	11,6	10,5	10,5
Armenia	GDP growth rate (%)	5,9	13,9	2,2	3,6	3,0	0,2
711 mema	Import of goods and services (% GDP)	50,5	43,2	45,3	47,0	42,0	N/A
	Export of goods and services (% GDP)	23,4	28,8	20,8	28,6	29,8	N/A
	GDP (in billions USD)	5,3	13,2	52,9	75,2	53,0	37,6
Azerbaijan	GDP growth rate (%)	11,1	26,4	4,9	2,0	1,1	-3,8
112ci baijan	Import of goods and services (% GDP)	38,9	52,9	20,7	26,2	34,8	N/A
	Export of goods and services (% GDP)	39,0	62,9	54,3	43,3	37,8	N/A
	GDP (in billions USD)	3,1	6,4	11,6	16,5	14,0	14,2
Georgia	GDP growth rate (%)	1,8	9,6	6,3	4,6	2,8	2,7
Georgia	Import of goods and services (% GDP)	39,7	51,6	52,8	60,5	64,9	N/A
	Export of goods and services (% GDP)	23,0	33,7	35,0	42,9	45,0	N/A
	GDP (in billions USD)	109,6	219,8	467,8	415,0	374,3	376,8
Iran	GDP growth rate (%)	5,8	4,2	6,6	4,3	-1,6	6,5
Iran	Import of goods and services (% GDP)	19,8	24,8	20,3	18,9	N/A	N/A
	Export of goods and services (% GDP)	21,5	31,2	25,4	24,2	N/A	N/A
	GDP (in billions USD)	18,3	57,1	148,0	221,4	184,4	133,76
Kazakhstan	GDP growth rate (%)	9,8	9,7	7,3	4,2	1,2	1,1
Kazakhstan	Import of goods and services (% GDP)	49,1	44,6	29,9	25,6	24,7	N/A
	Export of goods and services (% GDP)	56,6	53,2	44,2	39,3	28,5	N/A
	GDP (in billions USD)	1,4	2,5	4,8	7,5	6,6	6,6
Kyrgyzstan	GDP growth rate (%)	5,4	-0,2	-0,5	4,0	3,5	3,8
isyi gyzstan	Import of goods and services (% GDP)	47,6	56,8	81,7	87,7	72,2	N/A
	Export of goods and services (% GDP)	41,8	38,3	51,6	37,4	36,2	N/A
	GDP (in billions USD)	1,3	3,0	5,8	8,0	6,6	6,8
Moldova	GDP growth rate (%)	2,1	7,5	7,1	4,8	-0,5	4,0
initiation a	Import of goods and services (% GDP)	75,4	91,7	78,5	78,5	74,2	N/A
	Export of goods and services (% GDP)	49,8	51,1	39,2	41,5	43,3	N/A
	GDP (in billions USD)	0,9	2,3	5,6	9,2	7,9	6,9
Tajikistan	GDP growth rate (%)	8,3	6,7	6,5	6,7	6,0	6,9
- ujinistuni	Import of goods and services (% GDP)	100,9	52,8	52,6	44,8	42,3	N/A
	Export of goods and services (% GDP)	98,8	26,0	15,3	9,1	10,5	N/A
	GDP (in billions USD)	31	86	136	133	91	93
Ukraine	GDP growth rate (%)	5,9	2,7	4,2	-6,55	-9,87	2,3
Okraine	Import of goods and services (% GDP)	57,4	50,6	51,1	52,1	54,8	N/A
	Export of goods and services (% GDP)	62,4	51,5	47,05	48,6	52,8	N/A
	GDP (in billions USD)	13,8	14,3	39,3	62,6	66,7	66,5
Uzbekistan	GDP growth rate (%)	3,8	7,0	8,5	8,1	8,0	7,8
OLDERISTAII	Import of goods and services (% GDP)	21,5	28,7	28,5	27,3	22,2	N/A
	Export of goods and services (% GDP)	24,6	37,9	31,7	23,2	20,7	N/A

Source: Available statistical data – scientific research

GDP analysis carried out in Table 93 showed an overall upward trend in most countries. The highest GDP was recorded in Iran and Kazakhstan, on the contrary, the lowest in Kyrgyzstan, Moldova and Tajikistan. Based on the analysis it is possible to assume a GDP growth with different growth rates in the individual countries.

The analysis of the import of goods to EU countries from the analysed countries in the period of 2005 - 2016 is carried out in Tables 94 and 95.

Country	Year	2005	2010	2012	2013	2014	2015	2016
Armenia	TOTAL EU 28 countries	514	260	275	261	274	305	335
111111111	TOTAL RFC OEM countries	246	117	97	71	106	137	110
Azerbaijan	TOTAL EU 28 countries	2 508	10 045	14 287	14 370	13 206	10 696	7 605
112ci baijan	TOTAL RFC OEM countries	1 018	2 366	3 565	4 674	4 624	3 769	2 340
Georgia	TOTAL EU 28 countries	276	567	583	667	659	736	551
Georgia	TOTAL RFC OEM countries	105	266	375	429	346	357	269
Iran	TOTAL EU 28 countries	11 538	14 528	5 652	783	1 158	1 235	5 494
11411	TOTAL RFC OEM countries	2 202	2 494	1 992	319	346	380	1 316
Kazakhstan	TOTAL EU 28 countries	10 275	15 909	24 555	23 865	23 859	16 247	12 773
	TOTAL RFC OEM countries	4 588	7 431	9 390	9 536	11 317	6 477	5 798
Kyrgyzstan	TOTAL EU 28 countries	17,5	198,7	54,3	77,5	79,5	50,5	72,8
11j1gj250011	TOTAL RFC OEM countries	7,2	8,5	21,5	19,2	24,8	20,2	20,8
Moldova	TOTAL EU 28 countries	439	585	944	963	1 160	1 223	1 317
112014014	TOTAL RFC OEM countries	200	277	530	535	620	753	826
Tajikistan	TOTAL EU 28 countries	107,6	56,8	120,1	89,5	61,1	58,4	94,2
i ujinistun	TOTAL RFC OEM countries	31,1	22,1	60,7	55,7	3,3	2,1	2,9
Ukraine	TOTAL EU 28 countries	8 718	11 547	14 643	13 882	13 731	12 833	13 080
Chiume	TOTAL RFC OEM countries	3 802	5 329	5 790	5 703	5 606	5 107	5 302
Uzbekistan	TOTAL EU 28 countries	637,4	346,9	260,2	246,8	233,2	245,9	174,5
CESCHIStun	TOTAL RFC OEM countries	206,8	68,7	40,4	28,8	38,4	26,2	30,0

Table 94: Import of goods to the EU in millions ϵ

Source: Available statistical data – scientific research

Country	Year	2005	2010	2012	2013	2014	2015	2016
Armenia	TOTAL EU 28 countries	30	41	63	52	62	75	140
111111111	TOTAL RFC OEM countries	13	12	11	11	15	21	21
Azerbaijan	TOTAL EU 28 countries	7 498	22 060	21 098	22 616	22 475	27 681	24 754
11201 Suljun	TOTAL RFC OEM countries	3 363	5 221	5 275	7 336	7 747	9 540	7 624
Georgia	TOTAL EU 28 countries	577	846	663	775	772	1166	591
00018-0	TOTAL RFC OEM countries	165	297	430	517	428	540	331
Iran	TOTAL EU 28 countries	37 481	32 137	8 248	531	1 475	1 726	16 304
11 411	TOTAL RFC OEM countries	6 633	5 254	2 789	129	202	159	3 388
Kazakhstan	TOTAL EU 28 countries	30 336	32 809	35 580	36 748	40 569	39 809	38 737
	TOTAL RFC OEM countries	13 756	15 622	13 713	14 836	19 011	16 472	18 292
Kyrgyzstan	TOTAL EU 28 countries	11,2	14,2	16,5	20,7	19,6	22,7	22,6
iiijigj 25tall	TOTAL RFC OEM countries	5,9	9,2	14,1	13,0	10,4	13,3	13,9
Moldova	TOTAL EU 28 countries	546	545	698	733	1 344	1 395	1 803
1.20140.14	TOTAL RFC OEM countries	346	347	424	442	669	950	1 1 38
Tajikistan	TOTAL EU 28 countries	61,8	29,1	63,3	45,9	31,1	26,2	50,4
- • J	TOTAL RFC OEM countries	23,1	13,3	34,7	33,1	1,4	0,9	1,7
Ukraine	TOTAL EU 28 countries	44 335	46 407	51 882	52 641	56 513	54 655	54 945
0	TOTAL RFC OEM countries	21 518	22 521	21 638	23 227	23 673	22 966	24 567
Uzbekistan	TOTAL EU 28 countries	875,2	348,1	79,9	84,6	77,0	56,9	68,6
C 2.5 C Mistuii	TOTAL RFC OEM countries	137,3	98,2	27,6	15,4	29,3	17,2	12,3

Source: Available statistical data – scientific research

The analysis of the export of goods from EU countries to the analysed countries in the period of 2005 - 2016 is carried out in Tables 96 and 97.

Country	Year	2005	2010	2012	2013	2014	2015	2016
Armenia	TOTAL EU 28 countries	420	556	683	717	713	629	600
	TOTAL RFC OEM countries	162	250	276	312	273	243	231
Azerbaijan	TOTAL EU 28 countries	1 496	2 348	2 994	3 729	3 478	3 450	1 880
11201 Suljun	TOTAL RFC OEM countries	533	1 027	1 126	1 228	1 173	1 036	613
Georgia	TOTAL EU 28 countries	684	1 228	2 069	2 031	1 910	1 840	1 965
Georgia	TOTAL RFC OEM countries	378	730	1 274	1 164	1 108	987	946
Iran	TOTAL EU 28 countries	12 994	11 319	7 379	5 446	6 424	6 454	8 250
11 411	TOTAL RFC OEM countries	5 086	4 438	3 099	2 237	2 855	2 750	3 4 2 0
Kazakhstan	TOTAL EU 28 countries	3 584	5 236	6 925	7 472	6 748	6 194	5 201
	TOTAL RFC OEM countries	1 398	1 969	2 884	3 112	2 679	1 970	1 685
Kyrgyzstan	TOTAL EU 28 countries	109,8	210,8	421,7	399,1	400,8	270,0	236,9
11, 1 gj 25turi	TOTAL RFC OEM countries	47,8	67,3	134,2	124,0	126,3	86,5	78,9
Moldova	TOTAL EU 28 countries	1 082	1 563	2 038	2 280	2 352	2 070	2 0 2 6
11014014	TOTAL RFC OEM countries	605	995	1 342	1 447	1 559	1 403	1 339
Tajikistan	TOTAL EU 28 countries	87,6	145,0	163,1	195,8	216,3	165,5	174,8
i ujimstuni	TOTAL RFC OEM countries	22,9	51,5	46,2	56,6	65,9	63,8	55,2
Ukraine	TOTAL EU 28 countries	13 299	17 413	23 865	23 899	16 986	14 039	16 505
Chrunit	TOTAL RFC OEM countries	5 968	8 448	11 265	11 346	7 787	6 290	7 362
Uzbekistan	TOTAL EU 28 countries	591,7	1244,6	1222,2	1404,1	1562,1	1590,7	1625,7
C 2.5 CMBtull	TOTAL RFC OEM countries	309,0	687,7	626,3	651,2	752,2	660,1	613,0

Table 96: Goods import from EU in millions \in

Source: Available statistical data – scientific research

Table 97: Goods import from EU in thousands tons

Country	Country/Year	2005	2010	2012	2013	2014	2015	2016
Armenia	TOTAL EU 28 countries	112	159	150	149	167	124	123
111111111	TOTAL RFC OEM countries	53	82	52	47	58	40	40
Azerbaijan	TOTAL EU 28 countries	324	354	486	517	800	477	351
i izei suijuii	TOTAL RFC OEM countries	124	169	224	217	381	169	179
Georgia	TOTAL EU 28 countries	763	960	1 200	1 349	1 314	1 300	1 448
Georgia	TOTAL RFC OEM countries	569	760	936	987	998	950	1 061
Iran	TOTAL EU 28 countries	5 405	2 888	4 115	3 521	5 427	2 902	2 562
11 411	TOTAL RFC OEM countries	1 966	1 163	2 047	1 543	3 185	2 104	1 556
Kazakhstan	TOTAL EU 28 countries	980	897	1 001	1 028	1 070	1 024	1 093
	TOTAL RFC OEM countries	338	298	338	335	335	254	221
Kyrgyzstan	TOTAL EU 28 countries	63,1	106,3	271,2	219,8	219,9	81,2	52,4
11,18,2500	TOTAL RFC OEM countries	13,7	26,2	45,6	32,8	48,5	20,4	14,2
Moldova	TOTAL EU 28 countries	948	1 131	1 269	1 568	1 789	1 757	1 715
112014014	TOTAL RFC OEM countries	656	878	1 014	1 305	1 520	1 513	1 460
Tajikistan	TOTAL EU 28 countries	115,9	114,2	101,9	114,3	97,3	58,7	45,6
- ujinistan	TOTAL RFC OEM countries	13,3	16,7	9,6	8,4	9,7	10,6	8,1
Ukraine	TOTAL EU 28 countries	5 961	7 990	9 771	11 079	8 896	9 531	9 436
	TOTAL RFC OEM countries	2 341	3 159	3 702	4 562	3 368	3 991	3 476
Uzbekistan	TOTAL EU 28 countries	240,6	251,6	298,4	332,9	306,7	263,5	235,1
C 250 Mistuii	TOTAL RFC OEM countries	59,3	86,9	109,4	95,0	96,3	81,2	55,8

Source: Available statistical data – scientific research

Based on the analysis of import and export of goods between EU countries and the countries of Central Asia and Caucasus region, carried out in Tables 94 - 97, it is possible to conclude and assume:

- goods of the highest value were imported into EU countries from Azerbaijan, Iran and Ukraine,
- goods from other countries were exported in lower values not relevant for rail freight,
- the largest amount of goods was imported into EU countries from Azerbaijan, Iran, Kazakhstan and Ukraine,
- negligible amount of goods, which does not create significant rail transport opportunities, was imported into EU countries from other countries,
- import of goods into EU countries from the countries concerned has an overall upward trend and such trend can be expected in the future, based on GDP development in the countries concerned,
- import of goods into the countries concerned from the EU has an overall downward trend,
- within the import of goods into the countries concerned from the EU, rail freight transport has there are good possibilities for rail freight transport in Iran and Ukraine,
- approximately one third of the imported and exported goods were made between the countries included in the OEM corridor and the countries concerned,
- transport potential for rail freight can be expected in Ukraine, Iran and Kazakhstan,
- other countries do not currently export and import a significant amount of goods that would significantly increase the demand for rail freight services.

For the OEM corridor, there are only small possibilities of new transports within the countries of Central Asia and the Caucasus region. New transport opportunities that would be suitable for transport by rail can be expected in Kazakhstan, Iran and Ukraine. As far as the transport flows are concerned, directional inequality can be assumed. The analysis showed that up to a third of the goods are exchanged between the countries concerned and the OEM corridor countries creating opportunities for providing effective and reliable rail freight services. A more important aspect for the growth and development of the OEM corridor is, in particular, the transit through the countries of Central Asia and the Caucasus region to EU countries via OEM corridor railway infrastructure from China and India. This creates opportunities for international cooperation and the subsequent provision of comprehensive transport services through, in particular, intermodal transport.

Apart from the potential provided by third countries, following the completion of the infrastructure works concerning the railway connection between Athens and Patras, the sea links between the port of Patras and the ports of the Ionian Sea and the Adriatic Sea are expected to significantly enhance the intermodal efficiency of the Corridor, providing a considerable boost to its flows.

10 MARKETING SURVEY OF OEM USER SATISFACTION

One of the key objectives of the OEM corridor is the satisfaction of customers using the corridor services. A suitable method to determine the criterion of customer satisfaction is a questionnaire survey that is carried out on the basis of a marketing survey. To determine customer satisfaction, marketing surveys were carried out within the OEM corridor since it has become operational. This duty was performend also following the requirements stemming from Article 19(3) of the RFC-Regulation. The summary and the result of the satisfaction survey of 2016 are demonstrated hereby to reflect the latest feedback from those customers experienced in using the corridor

Customers' feedback is substantial information for further development, in addition Rail Freight Corridors (RFCs) are obliged by Regulation (EU) No 913/2010 to conduct a user satisfaction survey on yearly basis and publish the main results, what a picture can be drawn based on users' opinion and experience in connection with development of RFCs.

Orient East-Med Corridor has been a member of RNE Satisfaction Survey Platform since its establishment (2014). This common surface enables us to conduct a standardized research, which works with a harmonised questionnaire elaborated by RNE-RFCs Satisfaction Working Group and is carried out by an independent market research company (marketmind) with the help of CAWI (Computer Assisted Web Interview) system. This platform provides a European framework for the comparison and a complex European view.

For the time being the target population was not extensive, as a consequence the number of respondents cannot be numerous either. Thus the work was conducted with a small sample size, therefore the analysis was based on main trends, main shifts paying careful attention to the extent of data significance power. However the results reflect real market phenomena, which validate the survey, thus it provides a good base to reveal the main changes in OEM performance.

The fieldwork of the third wave was conducted in September and October, 2016. OEM kept the number of full interviews, which shows the commitments of our partners. This is a virtue which should be kept in the future as well.

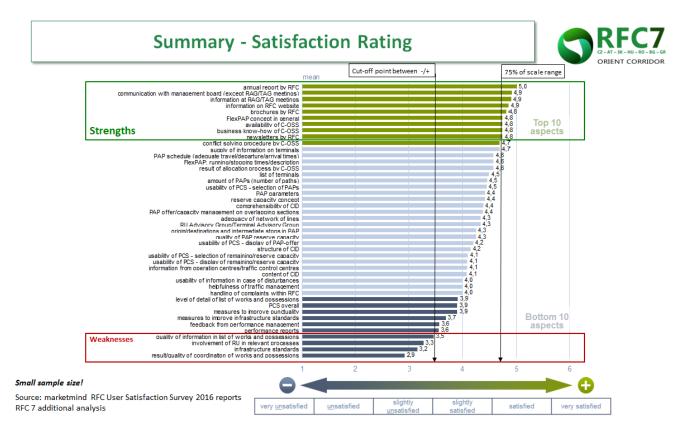


Figure 16: Graphical representation of summarized results of marketing survey

With the help of our suggested interpretation¹ a positive change was revealed: OEM could keep the number of its strengths compared to 2015, while it could decrease the number of its weaknesses.

The most successful key activities of RFC OEM were Path Allocation and Communication, whereas the weakest items identifed Infrastructure as such, as one of the most problematic areas, however which is an outer circumstance and does not lay in the hands of the RFC operative management, but rather a strong signal to the political decision makers for more attention for further necessary investments

Traffic management and Overall Communication showed a strongly developing tendency and it was especially welcomed in case of Traffic management where measures aiming at the improvement of this activity were accomplished, and the results verify OEM RFC's efforts absolutely clearly: performance average score of Traffic management as an area increased from 3,4 to 4,0.

¹Analytical point of view the cut-off point at the middle of the scale, at the turning point between Dissatisfied/Satisfied indicates the crucial aspects, and these show OEM RFC's weaknesses, while those items which exceed the rigorous, but progressive line at 75% of scale, where the "significantly best range" begins, can be considered as OEM RFC's strengths.

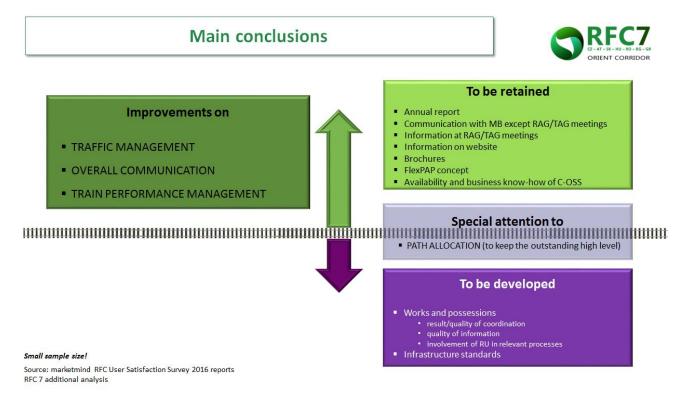


Figure 17: Graphical representation of main conclusions of Marketing survey

Comparison to Corridors' Overall results OEM has a distinguished advantage in Path Allocation, and roughly summarizing it is better than or almost the same as the overall in every item asked. Orient/East-Med RFC had in 2016 more steps forward, than backwards, but that certainly indicated that there are still targets to achive and work for, mainly concerning those items which reached a score below 3.7. In addition to that, further special attention should be paid at the improvement of:

- Infrastructure standards ('Condition of infrastructure; Train parameters; Electrification'²)
- Works and possessions ('Coordination; Quality and time of information; Keeping to plans; Alternatives')

However, it must be emphasized that a growing trend in the customer responses can be deceted and a positive tendency is shown in 2 years in a row, thus, based on the results, we can state that Orient East-Med corridor is on a right track.

² Based on open-ended answers

More information: http://www.rfc7.eu/public

11 SWOT ANALYSIS OF RFC OEM

The Rail Freight Corridor RFC OEM was put into operation on 08.11.2013. For its further development it is important to evaluate its current state as objectively as possible. Several methods and instruments deal with strategic planning, of which the SWOT analysis will be used for this purpose.

11.1 Characteristics of the SWOT analysis process

The method of the SWOT analysis consists in identifying the internal environment of the studied subject using its strengths and weaknesses and in identifying the impact of the external environment using opportunities and threats. Based on the recognized results a review of the internal and external environment analysis will be obtained, while the most appropriate strategy for the studied subject will be made up based on given scores. Elaboration of the SWOT analysis is conditioned by the completion of the collection and subsequent evaluation of all available data collected. Then, the created basis of the SWOT analysis is qualitatively and quantitatively assessed by independent experts and stakeholders, in this case by individual members of RFC OEM and furthermore by the customers who use the RFC (contacted via the Railway Advisory Group – RAG). Without the assessment of several experts and stakeholders, the SWOT analysis has only a subjective character of its compiler and cannot serve as a basis for the adoption of a strategic direction and decision-making.

It is very important to take the results of the annual Satisfaction Surveys into consideration which have been already carried out two times by marketmind, an independent market research company, under the coordination of Rail Net Europe (RNE) for the years 2015 and 2016. The annual Satisfaction Survey is demanded by the Art. 19(3) of the Regulation 913/2010 according to which the Management Board shall organise a satisfaction survey of the users of the rail freight corridor and shall publish the results of it once a year.

The findings of the aforementioned satisfaction surveys provide key indicators from mainly those customers' point of view who are already users of the RFC (mainly those customers who are represented in the RAG). It is very important to incorporate these results as well when defining the future strategic directions with respect to the fact that the main goal of the rail freight corridors should be the provision of services in order to satisfy the customers as much as possible.

In the case of RFC OEM the results of the 2016 Satisfaction Survey clearly show a developing tendency with regard to certain indicators which were lower in the previous year, right after the first operational year of the RFC.

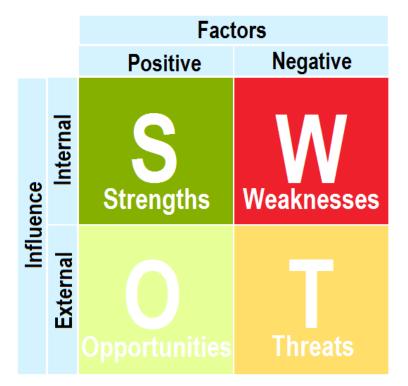


Figure 18: Theoretical graphical representation of SWOT analysis

Internal environment analysis S-W

The goal of the internal environment analysis is to identify the main strengths and weaknesses of the studied subject. Following their analysis, the quantitative scores are assigned to their qualitative weight. It is necessary, as priority, to build the strategy on the recognized strengths through which competitive advantage is achieved. In case the assessed subject has insignificant and negligible strengths, its strategy is to be aimed at reducing the value of weaknesses which may be a potential threat for the subject.

Among the most influential strengths we can include:

- such strengths which are specific for the studied subject and it is difficult to implement them for other subjects,
- tradition of a particular subject,
- qualified personnel,
- positive image of the subject perceived by customers via annual satisfaction surveys,
- product quality or service quality,
- developing research and development, etc.

On the other hand, the subject's weaknesses are characterized as critical factors which should be minimized to the lowest possible level. Among the weaknesses we can include:

- high prices that do not correspond to the product/service quality,

- negative image perceived by customers,
- poor organization and organizational skills of management,
- insufficient adaption of service portfolio to market needs, etc.

External environment analysis O – T

Finding the possibilities for new opportunities is one of the main reasons of the external environment analysis. The market opportunities are defined by three possibilities:

- Enforcing on the market with entirely new product/service (general possibility not directly applicable to RFC OEM).
- Enforcing on the market with existing product/service in innovative way.
- Enforcing on the market with scarce product/service.

Since the opportunities may have different forms on the market, the subject has to ensure their early and correct identification in the methodology of SWOT analysis elaboration. Among the opportunities we can include:

- streamline business processes in the market using available technologies,
- maximum use of offered infrastructure capacities and public resources,
- product innovation using state of the art technologies and customisation according to customer needs,
- drawing subsidies, etc.

The threats (risks) are the opposite of opportunities in the external environment that may have adverse effects on the direction of the studied subject and its development. Among the threats that may affect the company we include, in particular:

- legislative changes or lack of adequate legislative measures,
- lack of harmonised measures in the necessary procedures,
- political, economic, social, cultural, environmental and demographic changes,
- embargoes, tariffs, sanctions.
- new entrants into the market under consideration,
- management of overlapping sections, etc.

11.2 SWOT analysis of RFC OEM

The following four tables give the strengths, weaknesses, opportunities and threats of the internal and external environment of RFC OEM.

Table 98: Strengths of RFC OEM

S (Strengths)
Existing cooperation between infrastructure managers within RFC OEM countries;
Permanent dialogue with customers in RAG and TAG;
One-stop-shop for orders of RFC OEM railway infrastructure;
Interconnection of railway infrastructure within RFC OEM countries;
Efficient transport of bulk substrates;
Entry of new corridor member – Germany;
Reliability;
Availability of C-OSS;
Conflict solving procedure by C-OSS;
Flex PaP concept in general;
Business know-how of C-OSS;
Communication with Management Board (except RAG/TAG);
Information at RAG-TAG meetings;
Information on RFC website;
Annual Report by RFC;
Brochures by RFC;
Newsletters by RFC;
Available information on lines included in corridor;

Table 99: Weaknesses of RFC OEM

W (Weaknesses)

Higher transportation time compared to road goods transport;

Lower flexibility compared to road goods transport;

Long cross-border waiting times at certain borders of the RFC OEM;

Difference in charging and costs of infrastructure managers;

Language barriers;

Traffic disturbances due to work-related temporary capacity restrictions;

Lack of implementation of TEN-T minimum infrastructure standards;

Involvement of RU into relevant processes at the case of lately announced capacity restrictions;

Possibility of ordering the routes through C-OSS is not used;

Not all relevant lines included as principal lines in the corridor;

Enforcement of various interests of member states;

Lower level of publicity of services provided on RFC OEM;

 Table 100: Opportunities set for SWOT analysis of RFC OEM

O (Opportunities)
Complete modernization of lines which limit the increase of line capacity;
Speeding up the modernization process;
Favourable economic growth of countries included in corridor RFC OEM resulting in increase of
import/export;
Improving mutual cooperation between corridors;
Increase in impact of transport policy of individual countries in favour of rail;
Improvement of cross-border cooperation of rail system subjects;
Good technical conditions of railway infrastructure;
Safety of railway infrastructure;
Available free capacity;
Operative traffic control gives priority to Corridor trains;
Increase in costs of road goods transport, e.g. toll charges;
Business investment in railway sidings;
Shift of transport of dangerous goods and extraordinary consignments to rail;
Improve the quality of information in list of works and possessions;
Trend of using more environmentally friendly mode of transport (opportunity for rail transport);
Support of intermodal transport and sidings by the state;
Progressing favourable development of import/export from/to Turkey using rail transport;

Table 101: Threats set for SWOT analysis of RFC OEM

T (Threats)
Unfavourable economic development within RFC OEM countries followed by stagnation or
decrease in transport volumes;

Bad technical condition in some sections of railway lines;

Locations of railway infrastructure restriction resulting in increase in transport time;

Very lengthy cross-border times at certain borders due to unnecessary technical or administrative requirements, which could be eliminated;

Lack of capacity;

Reduction in quality of rail freight services on RFC OEM;

Reducing investment subsidies for rail transport;

Reducing non-investment subsidies for rail transport;

Tendency of transport policy of individual countries to rail transport disadvantage;

Reducing transport volumes of mass transportation;

Dates of corridor modernization not observed;

Reduce in competitiveness of transport by long-distance trains;

Increasing transportation time because of non-harmonized possessions;

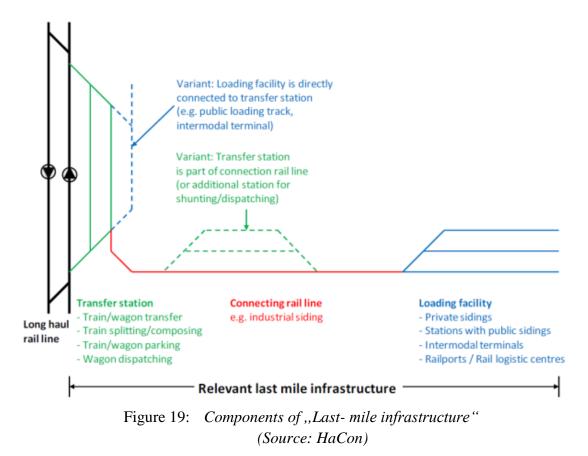
Lack of qualified personnel in operation;

Building logistic centres without connecting to railway infrastructure;

Exit of member states from the EU;

Disruption of rail freight services at border crossings due to migrant crises;

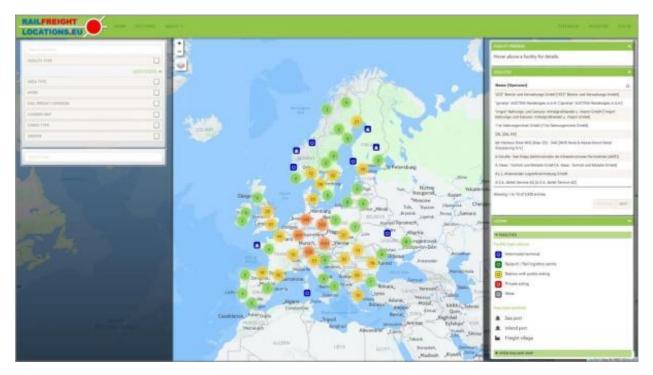
Based on the SWOT analysis, it is necessary to take the following measures for the RFC OEM into account:

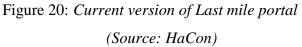

- segmentation of services and customers,
- agreements and contracts with carriers,
- increase the awareness to the corridor's services and products,
- improve planning and management of infrastructure works with the aim to reduce impact on traffic,
- promote improvement of infrastructure standard in order to allow more efficient train operations (leading to increased competitiveness of rail transport), in particular train length,
- develop and implement mitigating measures to avoid disruption of train services at border crossings for too long times,
- harmonisation of operational procedures and elimination of unnecessary rules (for example harmonise the number of buffer wagons), taking into account the Action Programme of 2016.
- -

12 LAST MILE

The term "Last mile" is, for the purposes of TMS, contrary to the general use of this term, characterized as the last or the first part of the start of transport by rail freight. The term may include, for example, the loading platform, the railway siding or another part of the rail freight transport chain. It may also include the whole part of infrastructure needed to connect the loading platform, the railway siding and the terminal. In order to provide information on the possibilities of rail freight services it is necessary to make up a list of primary information of Last mile along the OEM corridor. This list serves for the needs of all participating and potential subjects of the transport chain. These points can be characterized as the first customer contact points and therefore they create an offer of transport services. Without sufficient offer from the Last mile infrastructure, the demand for rail system services will decrease. Last mile should fulfil the conditions of safety, accessibility and appropriate location along the territory of OEM corridor.

The following Figure shows the Last mile components and the relevant Last mile infrastructure according to HaCon.




In order to better meet the demands of international transport customers and due to the strong position of road transport, it is very important to provide reliable and transparent information services within rail freight transport in the short term. Insufficient access to information on Last mile infrastructure is a significant obstacle to rail freight transport in effective planning, especially in cross-border transport.

Based on these requirements, DG MOVE has entrusted HaCon and UIC, supported by UIRR, TRION and IT Kreativa, with developing the web portal, within the whole EU, with GIS functions capable of presenting in a transparent manner all important information for the different types of Last mile infrastructure. The Study: "User-friendly access to information about Last mile infrastructure for rail freight" began to be elaborated in January 2015 and was completed in March 2016. It identifies 4 basic groups of Last mile infrastructure: private siding, public siding, and intermodal transport terminal and rail logistic centres.

The current version of the portal is running on the Internet domain <u>www.railfreightlocations.eu</u>. The home screen of the domain displays the search map and a lefthand filtering feature, the legends and the list can be viewed on the right. An initial view of the website set up for Last mile is shown in Figure 20.

It is possible to search by more detailed criteria, zooming the map or direct search from the list on the website. By searching the endpoint on the map the available detail information on the relevant part of Last mile infrastructure is displayed. Detailed information on the relevant part of Last mile infrastructure illustrated by satellite image currently includes:

- basic data: Last mile infrastructure type, address, specific data, opening time, etc.,
- technical parameters of railway infrastructure,
- accessibility of modes of transport provided,
- availability of services provided,
- links to websites that can be another source of information.

Abbreviations:

HaCon Ingenieurgesellschaft mbH, Hannover (DE) – Lead Partner

UIC - Union Internationale Des Chemins De Fer, Paris (FR)

UIRR - Union Internationale des sociétés de transport combiné Rail-Route (BE) - Subcontractor

Triona AB (SE) subcontractor

IT Kreativa (MK) subcontractor

The List of Last mile for the OEM corridor is given in Appendix H.

13 STRATEGICAL MAP OF THE RFC OEM (PROPOSED BY VVÚZ)

In order to fulfil the basic objectives of the OEM corridor it is necessary to set out the strategic steps for their fulfilment. One of the appropriate methods for creating strategic processes is the Balanced Score Card – BSC. BSC is a complex strategic method that looks at the subject surveyed through four perspectives and their mutual relationships. It is a financial, customer, process, learning and growth perspective. BSC is based on the vision and strategy of the object surveyed and on that basis for each perspective the mission and strategic objectives, to which certain metrics and their target values are assigned, will be determined. All perspectives are logically connected and linked and this method, therefore, provides a complex view of the object surveyed and its performance.

According to the proposed strategical map the RFC OEM main visions are:

- being a competent and highly appreciated partner and service provider to rail freight undertakings, shippers and cooperation partners and stakeholders,
- maintaining a strong position in the outstanding performances such as C-OSS services and further development of RFC product as a response to the market demand,
- continuously improving on indicators where customer satisfaction is not yet satisfying,
- growth of rail freight performances,
- strengthening rail freight position within the EU, development of cross border rail interoperability in order to reach the goals laid down in the White Book for Transport of the European Commission,
- progressive reduction of social costs of transport such as reduction of CO₂ emission with the shifting of more and more traffic to rail,
- expand cooperation with rail carriers and individual rail infrastructure managers through increased range of services.

According to the proposed strategical map the RFC OEM mission consists particularly of:

- providing smooth, reliable and high quality services for rail freight undertakings, terminals and end customers,
- increasing awareness and facilitating the use of RFC OEM's services through progressive deployment of customer-friendly IT-tools such as PCS system of RNE,

- developing effective procedures in removing bottlenecks (infrastructural, administrative or else),
- stability of rail system status and tradition by minimizing impact of works on traffic operations and ensuring a good state of infrastructure maintenance,
- good responsiveness to customer requirements at the highest levels,
- maintaining a good cooperation with the Core Network Corridor Coordinator of the CNC
 OEM in order to be able to effectively contribute to the development and modernization of railway infrastructure with regard to the specific needs of rail freight,
- facilitation of intermodal transport (RO-LA and Unaccompanied Combined Traffic),
- promoting rail as an environmentally friendly mode of transport among prospective shippers and political decision-makers,
- continuously contributing to the development of the rail system within the EU and the network of EU Rail Freight Corridors.

- .

The following figure shows the BSC strategic map for the OEM corridor. The strategic map is based on the vision and mission of the OEM corridor and its four perspectives.

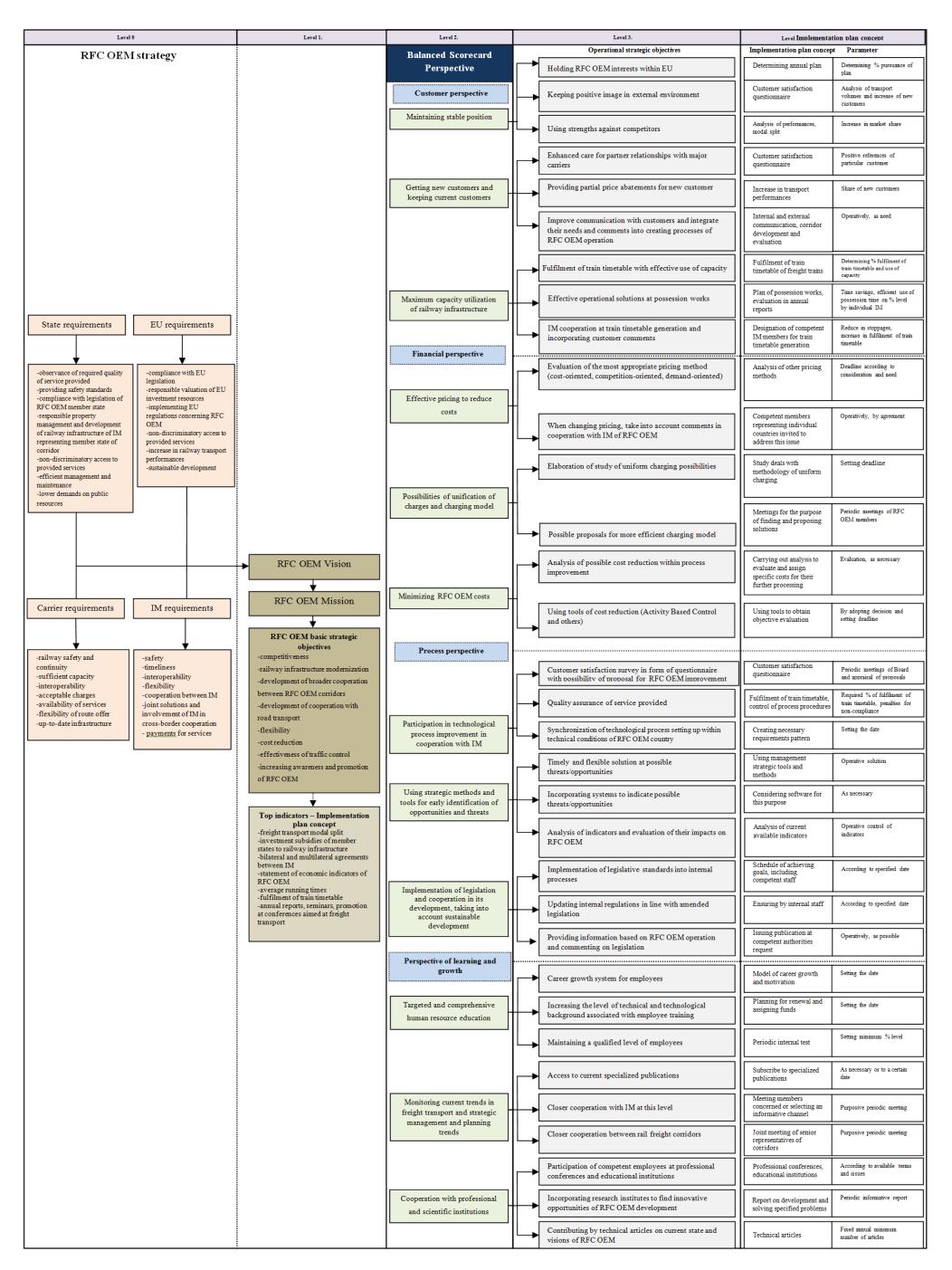


Figure 21: Map Balanced Score Card of corridor OEM

14 CONCLUSIONS AND RECOMMENDATIONS

The international rail freight corridor OEM was established in 2013 in order to ensure coordination between the Parties concerned, more effective transport management by introducing the concept of the one-stop shop, fulfilment of the requirements of the RFC-Regulation, and to boost some increase in transport performances as well as to improve transport continuity across the Member States concerned aiming at a sufficient prioritization of rail freight. Based on the analyses carried out, marketing survey, comparison of modal split and other important qualitative and quantitative transport indicators, we can state that even if there are lots of challenges the RFC OEM seems to be on the right track. This conclusion can precisely be backed by the latest results of the User Satisfaction Survey of 2016 which are inter alia the improvement in the field of traffic management issues, overall communication procedures between the customers and the operative management of the corridor and last but not least the results of the Train Performance Management showed growing tendency in comparison with that of the survey of 2015. It is important to stress that these results stem from customers who actually use the corridor's services. The real strengths of the corridor proved to be in the field of path allocation and the services provided by the C-OSS. Customers highly valued the customer orientation, newsletters, business know-how and availability of the C-OSS Manager and welcomed the Flex-PaP concept in general.

Thanks to the corridor's route alignment, geographical position and developing economic indicators, a definitive growing tendency regarding traffic potentials between the Member States of the RFC OEM as well as new transport opportunities between Turkey, Kazakhstan, Iran and China can be forecasted. In order to better serve this progress, RFC OEM's operative management developed new initiatives aiming at the improvement of the corridor's offer which were welcomed by our customers. One good example could be that for the first time in 2016, the path-construction process was preceded by a new, service-oriented initiative offered by the C-OSS Manager, inviting all potential applicants into a preliminary consultation in order to improve the quality of PaPs for timetable 2017 and Reserve Capacity for timetable 2016 by collecting their needs. As a result, the PaP-catalogue of 2016 offered to our Customers 13.9 million path-kilometers (km*running days) of high-quality paths for international traffic. Regarding the annual requests for international paths 14% of the available corridor capacity, i.e. 1.92 million path kilometers, was pre-allocated which was a major increase compared to the 9% in 2015. Furthermore, it is worth to mention that the total requested running days were 1662 with an average 138,5 per request. The longest requested PaP distance was 1643.9 km with an average of 1010 km per request. These numbers show us a clear interest in utilizing corridor-capacity mainly by the long-distance traffic between Germany and

Turkey. When it comes to the assessment of the need for Reserve Capacity, there had been 8.2 million path-kilometers provided to serve the interim needs of RFC OEM customers out of which 1.38 million requested and allocated through the C-OSS, which showed also an increase compared to the timetable year of 2015. Following strong request from the market, the C-OSS started to examine the feasibility to significantly lower the deadlines for requesting reserve capacity before the train's running day (results are expected to 2017/2018).

The accession of Germany scheduled to 2018 will contribute to the further growth and development of the corridor. Furthermore, following the completion of the infrastructure works concerning the railway connection between Athens and Patras, the sea links between the port of Patras and the ports of the Ionian Sea and the Adriatic Sea are expected to significantly enhance the intermodal efficiency of the corridor, providing a considerable boost to its flows.

Due to its strategical importance, the RFC OEM could have further potentials for extension, but any future modification in its current alignment needs to be underpinned by significant increase in demand for international rail freight services.

Based on the comprehensive results of the TMS for RFC OEM, the following measures for ensuring further development and fulfilling the strategic objectives resulting from the corridor's mission and vision are recommended:

	Recommendation	Recommended responsible
1	Adaptation of priority rules to the needs of rail freight transport.	Infrastructure Managers of RFC OEM (IMs)
2	Increase the number and the quality of train paths for the international rail freight transport.	Corridor-One Stop Shop office (C-OSS), IMs
3	Regularly evaluate the satisfaction of Railway Undertakings (RUs) and other users of the whole railway network in order to ensure and promote quality rail services.	European Commission (EC), RFC OEM, IMs
4	Proceed towards the creation of a European-wide harmonised regime for infrastructure charges.	EC, IMs

5	Internalization of negative external costs in transport sector.	EC, European Parliament (EP), European Council, Member States (MSs)
6	Increase, adapt and regularly monitor investments for the removal of bottlenecks along the corridor.	MSs, EC, IMs, TEN-T Core Network Corridor (CNC)
7	Increase, adapt and monitor investments in modernization of basic and connecting transport infrastructure including last-mile within the corridor.	EC, CNC, IMs
8	Coordinate the investment plan regarding the transport infrastructure of the corridor.	EC, CNC, MSs (national investment plans), IMs
9	Ensure proper and effective maintenance of railway infrastructure of the corridor.	IMs
10	Ensure proper and effective traffic management rules and stable and reliable coordination process for temporary capacity restrictions (TCRs) along the corridor.	IMs, C-OSS, RUs
11	Actively cooperate with other RFCs	MSs, IMs, RFC Network, RNE-RFC High-Level meeting
12	Extend the network of local and regional intermodal terminals that can provide high-quality and competitive intermodal transport services.	EC, MSs
13	Permanent and effective cooperation with intermodal transport operators, Railway Undertakings and Authorized Applicants.	Intermodal Terminals, Terminal Advisory Group of RFC OEM (TAG), RUs, Railway Advisory Group of

		RFC OEM (RAG)
14	Continuously improve the quality of market surveys and overall communication between the RFC bodies (as defined by the RFC-Regulation) in order to succeed problem solving.	RFC OEM Executive Board (EB), Management Board (MB), RAG, TAG, RFC OEM Working Groups (WGs); EC, CNC Coordinator and Consultants for CNC OEM
15	Establishing procedures for regular reporting to the RFC OEM Management and Executive Boards by a bilateral Bulgarian- Turkish cooperation group between the IMs, Ministries and authorities of both countries aimed at initiating measures to solve the problems at the BG/TK border and taking measures to promote, where appropriate, an exchange between TCDD and RFC OEM Management Board on issues related to traffic between Turkey and RFC OEM. Article 14 of Directive 2012/34/EU shall be always respected as regards of bilateral cooperation.	Bilateral cooperation of competent bodies of Bulgaria and Turkey; MSs, IMs, EB and MB of RFC OEM

These recommendations are based on the results of the TMS, the empirical knowledge of IM's experts working with the corridor, OEM corridor staff, railway undertakings, marketing research and customer satisfaction surveys. The recommendations aim at the achievement of a modal increase for international freight services to rail and the improvement of long-distance cross-border rail services. Well-set and customer-oriented services will contribute to a higher demand for rail freight services, effective modal split, savings in negative external costs of transport and sustainable development. This will contribute to fulfil the vision and mission of the OEM corridor as well as to the achievement of the main goals adopted by the European Commission in its White Book on Transport of 2011 towards a competitive and resource efficient transport system. These recommendations should be considered as the challenges for further improvement of the OEM corridor alone but with the cooperation and involvement of all respective stakeholders.

LIST OF APPENDICES

- Appendix A Analysis of OEM corridor bottlenecks
- Appendix B Supplementary data Czech Republic
- Appendix C Supplementary data Slovak Republic
- Appendix D Supplementary data Hungary
- Appendix E Analysis of transport performances in Romania
- Appendix F Analysis of transport performances in Bulgaria
- Appendix G Analysis of transport performances in Greece
- Appendix H List of Last mile for OEM corridor
- Appendix I Modal split analysis
- Appendix J Rail freight transport by group of goods
- Appendix K Gradient
- Appendix L Technical data of the lines in xls.
- Appendix M Investment projects in xls.

Appendix A

Country	Line section	Bottlenecks	Reasons	Suggestions how to remove bottlenecks				
	Bad Schandau – Wilhelmshaven	Technical requirements	no electric traction	Project ABS Oldenburg – Wilhelmshaven (electrification)				
Germany	Bremen – Bremerhaven	-	-	-				
	Berlin/ Magedeburg – Hamburg	-	-	-				
C 1	Dresden – Rostock	-	-					
Czech Republic	Praha – Česká Třebová	Line capacity consumption	between 5:00 – 20:00 more than 100%	-				
	Břeclav – Gänserndorf		No bottle	enecks				
	Gänserndorf – Wien Zvbf		No bottlenecks					
	Gänserndorf – Marchegg Gr.		Not elec					
	Wien Zvbf – Hegyeshalom		No bottle	enecks				
	Wien Zvbf – Wiener Neustadt (über Baden)		No bottlenecks					
Austria	Wiener Neustadt – Sopron via Loipersbach – Schattendorf	Not electrified		ns hampering the handling of longer trains				
	Gramatneusiedl – Wampersdorf		No bottle					
	Parndorf – Bratislava-Petrzalka		No bottle					
	Wien Zvbf – Ebenfurth		No bottle					
	Ebenfurth – Wiener Neustadt Ebenfurth – Sopronn border		No bottle No bottle					
	Ebenfurtii – Sopronii border		1. reduced speed on	ellecks				
	Kúty border - Devinska N.Ves	1. two bridges in section Veľké Leváre – Malacky- Zohor, 2. Devínska N. Ves	bridges (80 km/h, 120 km/h) 2. Lack of tracks due to: A change of loco	1. recontstruction of bridges for speed 140 km/h, 2. Building of the seconds track to Austria				
	Devínska N. Ves – Bratislava hl.st.	1. tunnel Bratislava Lamač – Bratislava hl.st., 2. Bratislava (all stations)	available \rightarrow lack of capacity, 2. Limiting of some locomotives	1. complex tunnel reconstruction, 2. Removal of 25 Hz track circuits				
Slovakia	Bratislava hl.st. – Dunajská Streda – Komárno border	1. Bratislava hl.st Bratislava Nové Mesto, 2. Bratislava Nové Mesto – Komárno	increasing in the future), 2. One track line \rightarrow lack	1. 138 building of 2. Line track (Bratislava hl.st. – Bratislava Nové Mesto), 2. Electrification, building of 2. Line track (Bratislava Nové Mesto – Komárno)				
	Bratislava hl.st. – Rusovce border	Bratislava Petržalka	limited lenghth of trains towards Austria 620 m for trains with electric locos, 690 m for trains with diesel locos), change of traction (SK/AT)	building of trolley line over the connecting line				
	Bratislava hl.st Nove Zamky	-	-	-				
	Nove Zamky – Komrano border	-	- reduced speed in	-				
	Nove Zamky – Sturovo border	Kamenica n.Hronom	Kamanica n bronom (40	reconstruction of line tracks in kamenica n. Hronom for speed 120 km/h				
	Rusovce border - Hegyeshalom							
	Hegyeshalom border – Hegyeshalom	-	-	-				
	Hegyeshalom – Győr	-	-	-				
Hungary	Sopron border – Sopron	all section	single track+long distance between stations+at least hourly regular interval suburban trains					
	Ágfalva border – Sopron	-	-	-				

single track+long distance

between stations+at least

hourly regular interval suburban trains

Sopron station and

Sopron – Ágfalva section

Analysis of OEM corridor bottlenecks

 $Sopron-Gy{\"\"or}$

paralellisation project between 2015 and 2020 $\,$

	Győr – Komárom	-	-	_			
	Komárno border – Komárom		_				
	Komárom – Ferencváros	- Ferencváros station	level crossing of transit and shunting yard traffic just at the Budapest southern Danube bridge (almost only rail link between the Eastern and	there is no accepted plan to solve the problem			
			Western part of Hungary)	1 1			
Hungary	Stúrovo border – Vác		No bott				
ilungai y	Vác – Újszász	-	-	-			
	Vác – Ferencváros	Rákospalota – Újpest station	outworn station with manual switching+node of high frequency suburban trains	planned reconstruction of station between 2014 and 2020			
	Ferencváros – Soroksár- Terminál	100 % capacity utalization-	-	Construction of track No. VI, Second tum- out track for shunting in Soroksár- Terminál			
	Ferencváros – Újszász	-	-	-			
	Újszász – Szolnok	-	-	-			
	Ferencváros – Szolnok	-	-	-			
	Szolnok – Szajol	-	-	-			
	Szajol – Biharkeresztes border	-	-	-			
	Szajol – Lőkösháza border	-	-	-			
	Border (RO/HU) – Curtici		Finalised works in	n operational tests			
	Curtici – Arad	1	Finalised works in	*			
	Curtici	9 tracks are availab	le for transit trains, remaing	tracks are used for shunting, train formation and age			
	Arad – Simeria	Arad-km 614 Fin		ests Tender procedure for the section km 614-			
	Simeria – Coslariu	Congested capacity	Modernization works	Current state up to the works completion			
	Coslariu – Sighişoara	Congested capacity	Modernization works	Current state up to the works completion			
	Sighişoara – Braşov	-					
	Braşov – Predeal	-					
	Predeal – Brazi	-					
	Brazi – București		-				
	București – Fetești	-					
	Fetești – Constanța	Bottleneck on the section Fetesti – Medgidia, rehabilitation works, Current state up to the works completion					
Romania	Arad – Timisoara		1	-			
	Timișoara – Orsova			_			
	Orsova – Filiași			-			
	Filiasi – Craiova			-			
	Craiova – Calafat			-			
	Calafat – Border RO/BG			-			
	Border (RO/HU) – Episcopia						
	Bihor			-			
	Episcopia Bihor – Coslariu			-			
	Simeria – Gura Motru			-			
	Craiova - Bucuresti	Bottleneck on the se	ection Chiajna – Gradinari, re comp	chabilitation works, Current state up to the works			
	Videle - Giurgiu	1	*				
	Bucuresti – Giurgiu	Electrification of s		uresti – Giurgiu, Giurgiu-border is justified and			
	Giurgiu – Border]	highly reco	ommended.			
	Vidin – Brusartsi	Dimovo – Oreshec and Dimovo-Sracimi	r Max gradients:29%0/2	8%0 2020 after reconstruction and modernization of the Corridor			
	Brusartsi – Mezdra	Brusartsi-Medkovec and Mezdra-Vraca	Max gradients:24%0 / 1				
	Mezdra –Sofia	Zverino-Lakatnik and Iliyanci-Kurilo	Max gradients:12%0/3				
Bulgaria	Sofia – Radomir	Hrabursko-Razmenna and Batanovci- Razmenna	Max gradients:13‰ / 1	6‰ -			
	Radomir – Kulata	Gulubnik-Delyan and Dyakovo-Delyan	Max gradients:15%/ 22				
	Sofia – Septemvri	Pobit Kamak – Vakarel and Kostene – Nemirovo	c Max gradients:29% / 2	 Some of the projects for reconstruction and modernization are under way and some other projects will be commenced during the second period of the Operational Program of Transportation 			
				· · · · · · · · · · · · · · · · · · ·			

	Septemvri – Plovdiv	Pazardjik – Ognjnovo and Stamboliiski –	Max gradients:5%/ 7%	_	
		Ognjnovo Popovica – Parvomai	With gradients.5700 7700		
Bulgaria	Plovdiv – Dimitrovgrad	and Dimitrovgrad – Sadovo	Max gradients:5‰/ 5‰	-	
	Dimitrovgrad – Svilengrad	Simeonovgrad – Svilengrad and Ljubimec – Harmanli	Max gradients:8‰/ 10‰	-	
	Kulata – Promachon	Single Line in poor condition	No electrification, no ERTMS, <22.5t, < 100km/h	Railway line upgrading with electrification	
	Promachon – Thessaloniki Port	Single Line in poor condition. Strymonas bridge.	The bridge on the Strymonas River does not allow for a direct movement of trains in the direction to Promahonas/Kulata. Need for reversal of trains moving towards Bulgaria in the Strymonas station. No electrification, no ERTMS, <22.5t, < 100km/h, <740m	Railway line upgrading, construction of an additional Strymonas bridge with electrification.	
	Thessaloniki – Platy	A number of old bridges restrict axle load	C4, no ERTMS	Plans for reconstruction or replacing old bridges	
	Platy – Larisa	-	No ERTMS	-	
	Larisa – Domokos	-	No ERTMS	-	
	Domokos – Tithorea	Single Line in a mountainous area.	No electrification, no ERTMS <22.5t, < 100km/h	New high speed double railway line with electrification under construction.	
	Tithorea – Inoi		No electrification, no ERTMS	Electrification reinstitution project under development	
Greece	Inoi – SKA	A number of old bridges restrict axle load. Restrictions due to old Ag. Stefanos Tunnel	No electrification, no ERTMS, <22.5t, <740m	Plans for general upgrading of the line and reconstruction of bridges and Ag. Stefanos Tunnel	
	SKA – Athens	-	No ERTMS, <740m	-	
	SKA – Thriassio	-	No ERTMS	-	
	Thriassio – Ikonio	_	No electrification, no ERTMS (Line is part of Comprehensive Network)	Plans for electrification and GSM-R	
	Svilengrad – Ormenio	_	No electrification, no ERTMS		
	Ormenio – Pithio	-	(Line is part of Comprehensive Network)	Plans for the upgrade, electrification and signalling of the line (if funds are found)	
	Pithio – Alexandroupolis	-	No electrification, no ERTMS, <22.5t, <100km/h, <740m	signaling of the line (if funds are found)	
	Alexandroupolis – Xanthi	-	No electrification, no ERTMS, <22.5t, < 100km/h, <740m		
	Xanthi – Drama	Temporary speed restrictions due to maintenance works	No electrification, no ERTMS (Line is part of	Plans for the upgrade, electrification and signalling of the line (if funds are found)	
	Drama – Serres	-	Comprehensive Network)		
	Serres – Strymonas	-			
	Athens – Rentis/ Piraeus	-	No electrification, no ERTMS, <22.5t, < 100km/h, <740m	Plans for general upgrade and electrification	
	Larisa – Volos Port	-	No electrification, no ERTMS (Line is part of Comprehensive Network) Electrification works and implementation under developm		

Appendix B

Table 102: Development of investment in transport infrastructure in the Czech Republic in mill.

Investment in infrastructure	2013	2014	2015
Investment subsidies in mill. CZK	27347,2	30683,2	57501,8
rail	8717,7	12787,3	31784,5
road	16827,3	16631,7	24156,6
air	1444,8	990,5	993,3
water	186,1	263,1	412,5
Non-investment subsidies in mil. €	23739,8	28273	37209,3
rail	9812,1	11665,3	18038
road	13334,3	16166,5	18674,8
air	394,3	246,6	222,8
water	120,1	123,7	204

CZK

Source: Member of RFC OEM from the Czech Republic

Table 103: Transport performance in train-km in passenger traffic in the Czech Republic

	Passenger traffic (in train- km)				
Line section	2013	2014	2015		
Praha – Kolín	5 253 082	5 104 555	4 873 866		
Kolín – Česká Třebová	7 070 169	6 930 551	7 047 065		
Česká Třebová – Brno	3 439 689	3 354 723	3 381 379		
Brno – Lanžhot st. hr.	2 211 439	2 193 740	2 208 169		
Kolín – Brno (via Havlíčkův Brod)	3 514 970	3 452 538	3 366 298		
Total	21 489 348	21 036 106	20 876 777		

Source: Member of RFC OEM from the Czech Republic

Table 104: Transport performances in rail freight transport in the Czech Republic

	Freight traffic								
Line section	2013			2014			2015		
	number of trains	train km	gross ton	number of trains	train km	gross ton	number of trains	train km	gross ton
Praha – Kolín	19 517	897 832	17 386 658	16 711	759 018	13 640 337	16 050	707 752	12 946 878
Kolín – Česká Třebová	51 863	2 787 239	56 132 806	53 426	2 945 057	58 242 611	55 859	3 353 862	60 724 560
Česká Třebová – Brno	44 451	914 777	38 483 537	42 655	1 013 506	31 400 001	45 308	1 258 844	37 976 301
Brno – Lanžhot st.hr.	39 143	1 120 455	40 544 119	39 228	1 135 865	38 988 525	40 778	1 216 126	42 807 548
Kolín – Brno (via Havlíčkův Brod)	22 020	1 990 201	26 108 754	20 703	1 860 753	24 529 748	19 889	1 559 988	21 158 487
Total	176 994	7 710 504	178 655 874	172 723	7 714 198	166 801 222	177 884	8 096 572	175 613 774

Source: Member of RFC OEM from the Czech Republic

Table 105: Comparison for type modes of transport in the Czech Republic

	Charges (€)								
	Containers (optional)		Chemicals	Standard good (optional)				
Line section	Access charges for intermodal train (ca. 40 x40' containers- 600 m, 1200 t,)	Average transport charges for 1x40'ctr./20 t by train	Access charges for block train (ca.500 m, 1800 t, chemicals)	Average transport charges for 40 t of chemicals- RID by train	Average transport charges for 40 t chemicals – ADR by tank truck	Average transport charges for 40t chemicals - AND-D by boat *	Access charges for single loading wagons (ca.500 m, 1500 t,)	Average transport charges for 30 t single loading by train	
Praha- Libeň – Česká Třebová	316,00	N/A	707,52	N/A	N/A	N/A	168,42	N/A	
Česká Třebová – Brno	177,25	N/A	396,87	N/A	N/A	N/A	94,47	N/A	
Brno – Lanžhot st.hr.	140,24	N/A	314,00	N/A	N/A	N/A	74,74	N/A	
Kolín – Brno	339,13	N/A	759,31	N/A	N/A	N/A	180,74	N/A	

Source: Member of RFC OEM from the Czech Republic

Appendix C

Table 106: Transport performance in train-km in passenger transport on the lines included in RFC

T in an other	Passeng	Passenger traffic (in train- km)				
Line section	2013	2014	2015			
Kúty št. hr Devínska N. Ves	1 102 870	1 049 637	1 125 158			
Devínska N. Ves – Bratislava hl. St.	445 889	414 041	453 549			
Bratislava hl. St Dunajská Streda	786 240	834 800	823 166			
Dunajská Streda – Komárno št. hr.	444 859	417 333	422 933			
Bratislava hl. StRusovcešt. Hr.	139 989	148 087	139 431			
Bratislava hl. St NovéZámky	2 265 758	2 266 934	2 471 962			
Nové Zámky – Komárno št. hr.	259 422	257 948	256 797			
Nové Zámky – Štúrovo št. hr.	674 686	659 812	657 934			
Total	6 119 713	6 048 593	6 350 931			

Source: Member of RFC OEM from the Slovak Republic

Table 107: Transport performances in rail freight traffic in the Slovak Republic

	Freight traffic									
T • • • •		2013		2014			2015			
Line section	number of trains	train km	gross ton	number of trains	train km	gross ton	numb er of trains	train km	gross ton	
Kúty št. hr Devínska N. Ves	19 952	911 561	10 878 267	22 902	931 270	13 184 297	24 870	1 014 390	14 344 301	
Devínska N. Ves – Bratislava hl. St.	16 412	204 218	245 006	16 586	209 978	280 985	17 320	218 113	375 583	
Bratislava hl. St Dunajská Streda	9 203	162 088	1 758 251	8 627	163 768	1 899 503	8 232	164 754	1 800 149	
Dunajská Streda – Komárno št. hr.	3 587	90 669	2 082 624	4 369	126 775	2 883 529	5 179	164 010	3 838 167	
Bratislava hl. StRusovcešt. Hr.	25 964	371 005	5 641 384	26 354	363 822	6 747 019	28 837	384 029	8 215 367	
Bratislava hl. St NovéZámky	14 990	824 371	1 195 450	15 016	796 053	1 738 751	17 165	912 682	1 879 811	
Nové Zámky – Komárno št. hr.	4 004	90 153	1 600 230	4 893	101 441	2 079 735	5 690	103 337	2 701 228	
Nové Zámky – Štúrovo št. hr.	8 078	303 666	5 387 321	8 525	314 895	5 892 423	10 505	389 367	7 641 489	

Source: Member of RFC OEM from the Slovak republic

Appendix D

GYSEV

Table 108: Transport performance in train-km in passenger traffic on GYSEV network

Time continu	Passenger traffic (in train-km)				
Line section	2013	2014	2015		
Hegyeshalom – Rajka HU/ SK state border	61 662	59 496	65 779		
Győr (MÁV/ GYSEV infra border) – Sopron HU/AT state border	1 251 733	1 240 187	1 222 703		
Sopron HU/AT state border – Ebenfurth	N/A	N/A	N/A		

Source: Member of RFC OEM for GYSEV from Hungary

Table 109: Transport performances in rail freight traffic on GYSEV network

	Freight traffic									
Line section		2013		2014			2015			
	number of trains	train km	gross ton	number of trains	train km	gross ton	number of trains	train km	gross ton	
Hegyeshalom – Rajka HU/SK state border	4 863	76 187	87 729 764	4 913	77 007	90 798 065	5 135	80 478	96 013 816	
Győr (MÁV/GYSEV infra border) – Sopron HU/AT state border	7 114	518 899	582 862 251	6 968	509 421	546 406 718	7 057	511 096	547 359 532	
Sopron HU/AT state border – Ebenfurth	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

Source: Member of RFC OEM for GYSEV from Hungary

MÁV

Table 110: Transport performance in train-km in passenger traffic on MÁV network

T has souther	Passo	Passenger traffic (in train- km)				
Line section	2013	2014	2015			
Hegyeshalom oh. ~~ Győr; Hegyeshalom pvh. 950+04 szelvény ~~ Hegyeshalom; Győr ~~ Győr- Rendező; Győr pvh.8+34 szelvény ~~ Győr	1 205 706	1 235 939	1 338 990			
Győrszentiván ~~ Gönyű	20					
Győr – Rendező ~~ Kelenföld; Komárom oh. ~~ Komárom; Kelenföld ~~ Ferencváros	4 183 537	4 723 539	4 989 707			
Komárom oh. ~~ Komárom	6	0	114			
Ferencváros ~~ Rákos; Kőbánya felső ~~ Rákos	337 971	334 448	332 223			
Ferencváros ~~ Soroksári út rendező	36 620	36 763	36 714			
Ferencváros ~~ Kőbánya-Kispest; Kőbánya – Kispest ~~ Szolnok	4 707 873	4 830 266	4 984 818			
Soroksári út ~~ Soroksár – Terminál	144 414	145 003	144 805			
Rákospalota – Újpest ~ Városliget elágazás	299 545	303 277	302 909			
Kőbánya-Kispest ~~ Városliget elágazás	597 479	613 899	588 590			
Szob oh. ~~ Rákos	2 128 685	2 253 559	2 263 996			
Rákos ~~ Szolnok	4 318 178	4 221 729	4 091 369			
Szolnok ~~ Szajol	126 982	513 987	506 882			
Szajol ~~ Lőkösháza oh.	1 912 303	1 961 215	1 981 004			
Lőkösháza ~~ Lőkösháza oh.	9 226	10 025	10 773			
Szajol ~~ Püspökladány	1 550 650	1 809 164	1 793 037			
Püspökladány ~~ Biharkeresztes oh.	508 074	461 226	509 034			
Vác ~~ Aszód; Vácrátót ~~ Rákospalota – Újpest	707 758	711 501	756 982			
Rákos ~~ Hatvan A elágazás	2 315 302	2 309 491	2 302 454			
Hatvan A elágazás ~~ Újszász	487 664	491 642	570 553			
Total	25 577 993	26 966 674	27 504 952			

Source: Member of RFC OEM for MÁV from Hungary

Table 111: Transport performances in rail freight traffic on MÁV network

					Freight tra	ffic			
Line section		2013		2013			2013		
Line section	number of trains	train km	gross tone	number of trains	train km	gross tone	number of trains	train km	gross tone
Hegyeshalom oh. ~ Győr; Hegyeshalom pvh. 950+04 szelvény ~ Hegyeshalom; Győr ~ Győr – Rendező; Győr pvh.8+34 szelvény ~ Győr	24 441	830 499	956 730 383	26 146	919 766	1 080 050 223	27 030	928 959	1 108 866 136
Győrszentiván ~~ Gönyű	63	617	329 564	214	2 097	1 640 491	183	1 793	1 317 414
Győr – Rendező ~ Kelenföld; Komárom oh. ~ Komárom; Kelenföld ~ Ferencváros	39 500	2 651 866	3 141 845 414	41 729	3 033 702	3 596 285 962	42 374	3 326 254	3 932 815 111
Komárom oh. ~~ Komárom	2 411	7 260	7 638 756	2 945	8 850	9 416 571	3 645	10 965	11 930 073
Ferencváros ~~ Rákos; Kőbánya felső ~~ Rákos	13 367	101 045	120 501 368	14 074	106 768	130 438 973	14 433	108 750	131 030 201
Ferencváros ~~ Soroksári út rendező	11 906	25 406	26 633 821	13 486	28 759	30 950 327	13 219	28 246	30 064 158
Ferencváros ~~ Kőbánya- Kispest; Kőbánya-Kispest ~~ Szolnok	13 229	1 092 860	1 392 767 399	13 491	1 114 203	1 381 553 315	13 847	1 137 492	1 401 876 018
Soroksári út ~~ Soroksár- Terminál	8 774	72 526	78 658 399	9 986	82 381	91 464 612	9 730	81 637	88 270 400
Rákospalota – Újpest ~~ Városliget elágazás	388	2 527	3 698 456	373	2 303	2 509 076	441	2 695	3 531 880
Kőbánya-Kispest ~ Városliget elágazás	411	2 818	3 859 952	346	2 407	2 573 258	438	3 063	3 762 771
Szob oh. ~~ Rákos	5 394	295 109	369 539 567	5 741	308 083	394 140 839	6 874	385 459	509 519 120
Rákos ~~ Szolnok	5 196	350 111	421 786 491	5 585	340 488	472 650 688	6 206	428 764	594 687 571
Szolnok ~~ Szajol	12 060	30 155	39 413 708	13 858	137 153	174 179 852	15 333	150 410	195 378 321
Szajol ~~ Lőkösháza oh.	10 347	921 516	1 144 233 333	9 757	951 526	1 201 423 443	11 050	1 107 599	1 468 758 121
Lőkösháza ~~ Lőkösháza oh.	7 030	18 986	24 219 348	7 375	19 918	25 687 822	8 487	22 915	30 654 499
Szajol ~~ Püspökladány	38 891	2 057 805	1 040 674 067	37 417	2 330 596	1 083 314 630	5 931	386 944	520 541 860
Püspökladány ~~ Biharkeresztes oh.	2 183	115 873	145 498 110	1 609	80 614	102 965 708	1 826	94 851	129 660 857
Vác ~~ Aszód; Vácrátót ~~ Rákospalota – Újpest	138	540	239 406	111	347	79 700	91	396	120 433
Rákos ~~ Hatvan A elágazás	7 158	387 757	521 065 407	8 299	449 798	601 285 542	7 649	414 833	540 731 087
Hatvan A elágazás ~~ Újszász	2 062	75 048	103 326 328	2 698	100 682	146 900 563	2 194	96 334	124 140 527
Total	204 949	9 040 321	9 542 659 277	215 240	10 020 438	10 529 511 594	190 981	8 718 359	10 827 656 557

Source: Member of RFC OEM for MÁV from Hungary

GYSEV

Table 112: Bottlenecks on GYSEV railway infrastructure

Line section	Bottlenecks because of technical requirements	Reasons	Suggestions how to move bottlenecks
HU Sopron border – Sopron – Győr (MÁV/GYSEV infra border)	Single track + long distance between stations + at least minimum hour intervals of suburban trains, insufficient capacity, lack of ERTMS, low axle weight of 21 t, insufficient train length of 600 m (insufficient for interoperability for 740 m long corridor trains)	There is single track between Győr – Sopron. There is no ERTMS with respect to the fact that the track, as well as its technical parameters are out of date.	The need of second track and reconstruction of Sopron – Győr track, as well as increase the maximum train length to 740 m
Sopron HU/AT state border – Ebenfurth		-	-

Source: Member of RFC OEM for GYSEV from Hungary

MÁV

	,	
T_{-1} , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	MANZ	information address
Table 113: Bottlenecks on	NAV rallwav	inirasiruciure

Line section	Bottlenecks because of technical requirements	Suggestions how to move bottlenecks
HU Sopron border-Sopron	-	-
HU Győr - Sopron	Single track + long distance between stations + at least hourly regular interval suburban trains	Second track for section Sopron- Győr
HU Komárom - Ferencváros	Level crossing of transit and shunting yard traffic just at the Budapest southern Danube bridge (almost the only one rail link between the Eastern and Western part of Hungary)	-
HU Stúrovo border – Vác	Single track+ long distance between stations + high frequency of suburban and international trains	-
HU Vác- Ferencváros	outworn station with manual switching+ node of high frequency suburban and international trains	-

Source: Member of RFC OEM for MÁV from Hungary

GYSEV

Table 114: Comparison of transport time and transport charges on GYSEV network

	Transp	ort time	Transport charges		
Line section	Average transport time by rail∆ (min) premise: no stops*	Average transport time by truck (hour:min)**	Access charges for "standard train" (1.600 t and 700 m) price freight transport 2015	Charges for the truck (road)	
Hegyeshalom - Rajka HU/SK state border	N/A	13 m**	52,59	N/A	
Győr (MÁV/GYSEV infra border) - Sopron HU/AT state border	N/A	1 h 29 m**	227,52	N/A	

Source: Member of RFC OEM for GYSEV from Hungary

**Average speed in road goods transport is 60 km/h

	Charges									
	Transport o	f containers		Transport of chemicals						
Line section	Access charges for intermodal train (ca. 40 x40'containers- 600 m, 1200 t,)	Average transport charges for 1x40'ctr./20 t by train	Access charges for block train (ca.500 m, 1800 t, chemicals)	Average transport charges for 40 t of chemicals- RID by train	Average transport charges for 40 t chemicals - ADR by tank truck	Average transport charges for 40t chemicals - ADN-D by boat *	Access charges for single loading wagons (ca.500 m, 1500 t,)	Average transport charges for 30 t single loading by train		
Hegyeshalom - Rajka HU/SK state border	47,88	1,2	54,95	1,22	N/A	N/A	51,41	1,03		
Győr (MÁV/GYSEV infra border) - Sopron HU/AT state border	200,89	5,02	240,84	5,35	N/A	N/A	220,86	4,42		

Source: Member of RFC OEM for GYSEV from Hungary

MÁV

Table 116: Comparison of transport time and transport charges on $M \acute{A} V$ network

	Transpo	ort time	Transport charges		
Line section	Average transport time by rail (min)	Average transport time by road (hour:min)**	Access charges for "standard train" (1.600 t a 700 m*)	Charges for the truck (road)	
Hegyeshalom - Győr	N/A	50 m	148,55	N/A	
Győr - Komárom	N/A	40 m	130,74	N/A	
Komárom - Tata	N/A	22 m	72,32	N/A	
Tata - Kelenföld	N/A	1 h 7 m	196,49	N/A	
Kelenföld - Ferencváros	N/A	6 m	38,12	N/A	
Szob oh - Vác	N/A	30 m	98,42	N/A	
Vác - Rákospalota - Újpest	N/A	25 m	85,16	N/A	
Rákospalota-Újpest - Angyalföld elágazás	N/A	4 m	20,03	N/A	
Angyalföld elágazás - Kőbánya felső	N/A	10 m	35,18	N/A	
Kőbánya felső - Ferencváros	N/A	6 m	35,42	N/A	
Kőbánya felső - Rákos	N/A	4 m	24,80	N/A	
Rákos - Újszász	N/A	1 h 41 m	221,83	N/A	
Újszász - Szolnok	N/A	17 m	69,52	N/A	
Szolnok - Szajol	N/A	12 m	50,57	N/A	
Szajol - Békéscsaba	N/A	1 h 38 m	253,56	N/A	
Békéscsaba - Lőkösháza	N/A	38 m	108,76	N/A	
Ferencváros - Soroksári út	N/A	8 m	27,57	N/A	
Soroksári út - Soroksár	N/A	2 m	35,09	N/A	
Soroksár - Soroksár-Terminál	N/A	2 m	31,91	N/A	
Ferencváros - Kőbánya-Kispest	N/A	6 m	36,50	N/A	
Kőbánya-Kispest - Szolnok	N/A	1 h 42 m	265,19	N/A	
Szajol - Püspökladány	N/A	1 h 11 m	197,20	N/A	
Püspökladány - Biharkeresztes	N/A	58 m	165,38	N/A	
Vác - Aszód	N/A	42 m	96,57	N/A	
Aszód - Hatvan	N/A	16 m	65,73	N/A	
Hatvan - Újszász	N/A	1 h 5 m	160,36	N/A	

Source: Member of RFC OEM for MÁV from Hungary

**Average speed in road goods transport is 60 km/h

Table 117: Comparison of charges for type modes of transport on MÁV network

	Charges (€)									
	Containers (o	optional)	Chemical	s (optional)	Standard good (optional)					
Line section	Access charges for intermodal train (ca. 40 x40'containers- 600 m, 1200 t,)	Average transport charges for 1x40'ctr./20 t by train	Access charges for block train (ca.500 m, 1800 t, chemicals)	Average transport charges for 40 t of chemicals- RID by train	Access charges for single loading wagons (ca.500 m, 1500 t,)	Average transport charges for 30 t single loading by train				
Hegyeshalom – Győr	134,15	3,35	155,75	3,46	144,95	2,90				
Győr –Komárom	119,16	2,98	136,53	3,03	127,85	2,56				
Komárom– Tata	66,10	1,65	75,43	1,68	70,77	1,42				
Tata – Kelenföld	175,28	4,38	207,10	4,60	191,19	3,82				
Kelenföld - Ferencváros	36,36	0,91	39,01	0,87	37,68	0,75				
Szob oh – Vác	88,97	2,22	88,97	2,22	96,06	1,92				
Vác - Rákospalota – Újpest	77,23	1,93	77,23	1,93	83,17	1,66				
Rákospalota-Újpest - Angyalföld elágazás	19,01	0,48	19,01	0,48	19,77	0,40				
Angyalföld elágazás - Kőbánya felső	32,43	0,81	32,43	0,81	32,28	0,65				
Kőbánya felső - Ferencváros	33,96	0,85	36,14	0,80	35,05	0,70				
Kőbánya felső - Rákos	23,78	0,59	25,31	0,56	24,55	0,49				
Rákos – Újszász	198,27	4,96	233,62	5,19	215,94	4,32				
Újszász – Szolnok	64,16	1,60	72,20	1,60	68,18	1,36				
Szolnok – Szajol	47,38	1,18	52,17	1,16	49,78	1,00				
Szajol - Békéscsaba	227,14	5,68	266,76	5,93	246,95	4,94				
Békéscsaba – Lőkösháza	98,91	2,47	113,69	2,53	106,30	2,13				
Ferencváros - Soroksári út	27,01	0,68	27,85	0,62	27,43	0,55				
Soroksári út –Soroksár	32,89	0,82	36,19	0,80	34,54	0,69				
Soroksár - Soroksár- Terminál	30,83	0,77	32,45	0,72	31,64	0,63				
Ferencváros - Kőbánya-Kispest	34,92	0,87	37,29	0,83	36,10	0,72				
Kőbánya-Kispest – Szolnok	237,45	5,94	279,07	6,20	258,26	5,17				
Szajol - Püspökladány	176,45	4,41	207,58	4,61	192,02	3,84				
Püspökladány – Biharkeresztes	147,79	3,69	174,18	3,87	160,99	3,22				
Vác - Aszód	86,11	2,15	101,81	2,26	93,96	1,88				
Aszód – Hatvan	60,81	1,52	68,19	1,52	64,50	1,29				
Hatvan – Újszász	144,17	3,60	168,46	3,74	156,31	3,13				

Source: Member of RFC OEM for MÁV from Hungary

Appendix E

T . <i>A</i> .	Passen	ger traffic (in trai	in- km)
Line section	2013	2014	2015
Border - Curtici	38 435	32 861	37 161
Curtici - Arad	182 520	139 502	148 225
Arad - Simeria	1 943 445	1 757 475	1 687 289
Simeria - Coslariu	1 021 745	801 985	632 714
Coslariu – Sighisoara	1 117 778	741 629	698 992
Sighisoara – Brasov	1 104 484	939 854	840 562
Brasov – Predeal	374 680	485 006	467 860
Predeal – Brazi	1 289 899	1 719 227	1 710 423
Brazi – Bucuresti	1 180 855	1 593 298	156 112
Bucuresti – Fetesti	1 134 757	1 557 520	1 487 542
Fetesti – Constanta	680 622	1 073 717	977 407
Arad – Timisoara	555 833	686 744	758 197
Timisoara – Orsova	1 244 543	1 403 456	1 342 015
Orsova – Filiasi	576 801	558 289	547 079
Filiasi – Craiova	479 263	561 886	650 557
Craiova – Calafat	229 087	299 237	357 161
Calafat – Border	0	3 047	4 669
Total	13 154 747	14 354 733	12 503 965

Table 118: Transport performance in train-km in passenger traffic in Romania

Source: Member of RFC OEM from Romania

Table 119: Transport performances in rail freight traffic in Romania

					Freight tra	ffic			
		2013			2014			2015	
Line section	number of trains	train km	gross ton	number of trains	train km	gross ton	number of trains	train km	gross ton
Border - Curtici	8 078,80	67 861,92	51 858 899,82	10 350,00	86 940,00	34 900 269,60	10 856,00	99 976,00	47 339 771,00
Curtici - Arad	7 061,35	125 294,08	103 001 249,40	9 346,00	158 779,80	63 201 138,00	9 326,00	174 959,00	84 525 669,00
Arad - Simeria	8 984,15	958 557,60	1 214 954 543,00	9 198,00	1 041 407,40	634 261 996,40	10 048,00	1 199 700,00	788 280 644,00
Simeria - Coslariu	5 748,45	295 149,71	332 054 468,20	6 056,00	335 446,40	198 060 234,40	6 576,00	362 130,00	186 451 728,00
Coslariu - Sighisoara	6 074,30	561 926,81	749 170 794,60	5 422,00	497 944,20	407 315 485,40	5 336,00	489 366,00	354 850 542,00
Sighisoara - Brasov	7 424,25	794 993,54	974 992 003,90	6 610,00	688 509,80	508 291 837,60	6 842,00	697 050,00	456 004 033,00
Brasov - Predeal	10 829,05	217 383,56	190 240 803,20	12 030,00	240 687,80	99 590 955,60	10 082,00	202 894,00	91 958 224,00
Predeal - Brazi	12 399,40	742 978,47	805 102 856,80	13 370,00	713 098,40	411 913 224,80	13 038,00	782 493,00	400 360 010,00
Brazi - Bucuresti	7 058,50	269 889,97	325 195 952,70	9 836,00	377 699,80	210 446 823,00	10 052,00	386 824,00	257 911 697,00
Bucuresti - Fetesti	7 645,60	872 872,07	1 252 038 659,00	11 612,00	1 303 987,80	856 581 764,40	12 580,00	1 474 524,00	1 026 063 344,0
Fetesti - Constanta	17 747,90	1 206 135,96	1 591 275 968,00	21 008,00	1 454 419,00	972 512 470,20	20 612,00	1 418 530,00	1 000 168 316,0
Arad - Timisoara	3 612,00	152 176,00	155 732 295,00	5 268,00	154 115,00	66 321 958,00	5 678,00	202 136,00	82 246 589,00
Timisoara - Orsova	4 324,00	626 359,00	730 484 934,00	6 214,00	637 984,00	337 412 401,00	5 910,00	715 481,00	371 284 610,00
Orsova - Filiasi	10 119,00	495 648,00	610 909 788,00	10 732,00	498 493,00	307 416 956,00	10 584,00	567 286,00	347 791 449,00
Filiasi - Craiova	11 970,00	365 515,00	514 669 604,00	14 362,00	379 218,00	291 877 264,00	16 222,00	525 051,00	438 649 914,00
Craiova - Calafat	4 729,00	21 165,00	15 586 819,00	11 446,00	68 600,00	25 093 848,00	13 038,00	87 736,00	28 788 475,00
Calafat - Border	0,00	0,00	0,00	47,00	150,40	23 137,00	131,00	419,00	82 719
Total	133 805,75	7 773 906,66	9 617 269 639	162 907,00	8637480,80	5 425 221 763,00	166 911,00	9 386 555,00	5 962 757 734

Source: Member of RFC OEM from Romania

Appendix F

		Charges			
		Containers	Chemicals	Standard good	
Country	Line section	Acess charges for intermodal train (ca. 40 x40'containers- 600 m, 1200 t,)	Acess charges for block train (ca.500 m, 1800 t, chemicals)	Acess charges for single loading wagons (ca.500 m, 1500 t,)	
	Vidin - Brusarci	162,46	244,03	210,69	
	Brusarci - Boichinovci	70,11	105,31	90,92	
	Boichinovci - Mezdra	103,01	154,72	133,59	
	Mezdra jug - Sofia	160,85	241,60	208,59	
	Sofia - Pernik	105,02	157,75	136,20	
	Pernik - Radomir	27,93	41,95	36,22	
	Radomir - General Todorov	279,07	419,17	361,91	
	General Todorov - Kulata	19,74	29,65	25,60	
	Sofia - Septemvri	192,12	288,56	249,14	
	Septemvri - Plovdiv	98,15	147,42	127,28	
Bulgaria	Plovdiv - Dimitrovgrad	143,53	215,59	186,14	
	Dimitrovgrad - Svilengrad	120,39	180,83	156,13	
	Ruse - Kaspichan	266,01	399,55	344,97	
	Kaspichan - Varna	157,95	237,25	204,84	
	Sindel - Karnobat	227,65	341,94	295,23	
	Nova Zagora - Simeonovgrad	114,89	172,57	148,99	
	Karnobat - Zimnica	63,35	95,15	82,15	
	Zimnica - Stara Zagora	172,69	259,39	223,95	
	Stara Zagora - Plovdiv	196,22	294,73	254,47	
	Mihailovo - Dimitrovgrad	62,72	94,21	81,34	
	Karnobat - Burgas	111,51	167,49	144,61	

Table 120: Analysis of charges on NRIC lines

Source: Member of RFC OEM from Bulgaria

Appendix G

Line section	Passenger traffic (in train- km)				
	2013	2014	2015		
Pireas- Athina- Thessaloniki/ Volos- Promachon	4 705 842	4 560 000	4 594 981		
Thess- Promachon- Alexandroupolis- Pithio- Ormenio	1 320 000	1 675 000	695 019		
Total	6 025 842	6 235 000	5 290 000		

Source: Member of RFC OEM from Greece

Table 122: Transport performances in rail freight traffic in Greece

		Freight traffic							
Line section		2013		2014			2015		
	number of trains	train km	gross ton	number of trains	train km	gross ton	number of trains	train km	gross ton
Pireas- Athina- Thessaloniki/ Volos- Promachon	N/A	N/A	N/A	2 810	228 765	1 943 364	8 253	590 783	6 093 900
Thessaloniki- Promachon- Alexandroupolis- Pithio- Ormenio	N/A	N/A	N/A	414	68 553	186 048	472	62 217	398 694
Total	N/A	N/A	N/A	3 224	297 318	2 129 412	8 725	653 000	6 492 594

Source: Member of RFC OEM from Greece

Appendix H

List of Last mile for OEM corridor

Germany

Object	Facility type	Facility address	Facility contact data
Wilhelmshaven			
Wilhelmshaven Eurogate	Intermodal terminal	Ozean-Pier 1, 26388 Wilhelmshaven, Germany	EUROGATE Container Terminal Wilhelmshaven GmbH & Co. KG , T +49 4421 77440, info@eurogate.eu
Rail Terminal Wilhelmshaven GmbH	Intermodal terminal	Ozean-Pier 1, 26388 Wilhelmshaven, Germany	Rail Terminal Wilhelmshaven GmbH , T +49 4421 7744 0, F +49 4421 7744 4977
NORDFROST Seehafen-Terminal	Intermodal terminal	Pazifik 25-45 26388 Wilhelmshaven Germany	Nordfrost Mario Albers T +'04421 7749 740 mario.albers@nordfrost.de
Sande	Station with public siding	26452 Sande Germany	DB Netz AG www.dbnetz.de
Bremerhaven			
Bremerhaven RTB	Intermodal terminal	Senator-Borttscheller-Str. 14, 27568 Bremerhaven, Germany	RTB Rail Terminal Bremerhaven GmbH , Andreas Rußler, T +49 471 94464151, F +49 471 9446429, a.russler@ntb.eu
Bremerhaven NTB	Intermodal terminal	Senator-Borttscheller-Str. 14, 27568 Bremerhaven, Germany	North Sea Terminal Bremerhaven GmbH & Co. T +49 471 9446400 sekretariat@ntb-bremerhaven.de
Bremerhaven CTB	Intermodal terminal	Senator-Borttscheller-Str. 1, 27568 Bremerhaven, Germany	EUROGATE Container Terminal Bremerhaven GmbH, T+49 471 142502 ctb@eurogate.eu
Bremerhaven MSC Gate	Intermodal terminal	Senator-Borttscheller-Str. 1, 27568 Bremerhaven, Germany	MSC Gate Bremerhaven GmbH & Co. KG T+49 471 142502 http://www.mscgate.eu/
Oldenburg	Station with public siding	Güterstraße 17 26122 Oldenburg (Old) Germany	DB Netz AG www.dbnetz.de
Brake J.MÜLLER BBT	Intermodal terminal	Nordstr. 2 26919 Brake Germany	J. MÜLLER Break Bulk Terminal GmbH & Co. KG Jürgen Huntgeburth T+49 4401 914204 juergen.huntgeburth@jmueller.de www.jmueller.de
Bremen			.
Hansakai	Intermodal terminal	Rigaer Str. 2 28217 Bremen Germany	Hansakai Umschlagbetriebe GmbH & Co. KG Peter Viet T+49 421 39930 F+49 421 3993246 viet@hansakai.de www.hansakai.de

Bremen- Sebaldsbrück	Station with public siding	Zum Sebaldsbrücker Bahnhof 28309 Bremen Germany					
Verden (Aller) Süd	Station with public siding	Moorstraße 4 27283 Verden (Aller) Germany	Verden-Walsroder-Eisenbahn T+49 4231 9227 10 www.vwebahn.de				
Hanover							
Hannover Nordhafen	Station with public siding	Hansastr. 16-18 30419 Hannover Germany	Hafen Hannover				
Hannover Nordhafen	Cannover NordhafenIntermodal terminalHansastraße 38 30419Germany		Städtische Häfen Hannover (Nordhafen) T +49 511 16842695 F +49 511 16845082 info@hannover-hafen.de www.hannover.de				
Hannover Brinker Hafen	Station with public siding	Am Brinker Hafen 5 30179 Hannover Germany	Hafen Hannover				
Rhenus AG	Railport/ Rail logistics centre	Am Lindener Hafen 26 30453 Hannover Germany	T +49 (0)511 2105818				
Hannover-Leinetor	Intermodal terminal	Bartweg 12 30453 Hannover Germany	Städtische Häfen Hannover Rolf Hesse T +49 511 16842695 F +49 511 16845082 info@hannover-hafen.de www.hannover.de				
Hannover Linden Hafen	Station with public siding	Bartweg 12 30453 Hannover Germany	Hafen Hannover				
DUSS-Terminal Hannover-Linden	Intermodal terminal	Harryweg 9 30453 Hannover Germany	DUSS mbH Gernold Berg T +49 511 2864576 F +49 511 2864578 duss-hannover@deutschebahn.com www1.deutschebahn.com				
Hann-Linden	Station with public siding	30449 Hann-Linden Germany	DB Netz AG www.dbnetz.de				
Hannover Misburger Hafen	Station with public siding	Am Hafen 3 30629 Hannover Germany	Hafen Hannover				
Megahub Lehrte	Intermodal terminal	Eisenbahnlängsweg 31275 Lehrte Germany	DB Netz AG www.dbnetz.de				
Braunschweig							
Railport Braunschweig	Railport/ Rail logistics centre	38126 Braunschweig Germany	DB Schenker Rail www.dbschenker.hafas.de				
Braunschweig Hgbf	Station with public siding	38126 Braunschweig Germany	DB Netz AG www.dbnetz.de				

Braunschweig Hafen	Intermodal terminal	Hafenstraße 34 38112 Braunschweig Germany	Hafenbetriebsgesellschaft Braunschweig mbH Jens Hohls T +49 531 2103410 F +0531 2103470 hohls@braunschweig-hafen.de
			www.braunschweig-hafen.de/
Magdeburg			
Magdeburg- Rothensee	Station with public siding	Oebisfelder Straße 39126 Magdeburg Germany	DB Netz AG www.dbnetz.de
Magdeburg Hanse- Terminal	Intermodal terminal	Am Hansehafen 20 39126 Magdeburg Germany	Magdeburger Hafen GmbH Jürgen Michaelis T +49 391 5939311 F +49 391 593 logistik@magdeburg-hafen.de www.magdeburg-hafen.de
Roßlau	Intermodal terminal	Industriehafen 3 06862 Dessau-Roßlau Germany	Industriehafen Roßlau GmbH Lutz Wiesel T +49 34901 66013 lutz_wiesel@binnenhafen-sachsen.de http://www.binnenhafen-sachsen.de/
Dessau Hbf	Station with public siding	Antoinetten Strasse 06844 Dessau Germany	DB Netz AG www.dbnetz.de
Lutherstadt- Wittenberg	Station with public siding	06886 Lutherstadt- Wittenberg Germany	DB Netz AG www.dbnetz.de
Fermerswalde	Station with public siding	Am Bahnhof 04895 Fermerswalde Germany	DB Netz AG www.dbnetz.de
Falkenberg (Elster)	Station with public siding	Bahnhostrasse 04895 Falkenberg (Elster) Germany	DB Netz AG www.dbnetz.de
Riesa Hafen	Intermodal terminal	Paul-Greifzu-Str. 8a 01591 Riesa Germany	Sächsische Binnenhäfen Oberelbe GmbH Tino Adam T +49 3525 721234 tino_adam@binnenhafen-sachsen.de www.binnenhafen-sachsen.de/
Riesa	Station with public siding	01587 Riesa Germany	DB Netz AG www.dbnetz.de
Hamburg			
Railport Hamburg 1	Railport/ Rail logistics centre	1. Hafenstraße 13 21079 Hamburg Germany	TRANSA T +49 (0)40 / 30 37 439-41 www.dbschenker.hafas.de
Container Terminal Tollerort (CTT)	Intermodal terminal	Am Vulkanhafen 30 20457 Hamburg Germany	HHLA Container Terminal Tollerort GmbH T +49 40 740010 F +49 40 74001100 info@hhla.de www.hhla.de

DUSS-Terminal Hamburg-Billwerder	Intermodal terminal	Halskestraße 67 22113 Hamburg Germany	DUSS mbH Manfred Schuster T +49 40 3918 6464 F +49 40 3918 6473 duss-hamburg- terminalleitung@deutschebahn.com www1.deutschebahn.com
Eurocargo Container Freight Station and Warehouse GmbH	Railport/ Rail logistics centre	Antwerpenstraße 3 21129 Hamburg Germany	
Hamburg Eurokombi	Intermodal terminal	Köhlfleetdamm 5 21129 Hamburg Germany	EUROKOMBI Terminal GmbH Thorsten Resse T +49 40 74051905 thorsten.reese@gmx.de http://www.eurokombi.de
Hamburg	Station with public siding	Antwerpenstraße 21129 Hamburg Germany	DB Netz AG www.dbnetz.de
EUROGATE Container Terminal Hamburg (CTH)	Intermodal terminal	Kurt-Eckelmann-Straße 1 21129 Hamburg Germany	EUROGATE Container Terminal Hamburg GmbH T +49 40 74050 ct-hamburg@eurogate.eu www1.eurogate.de
Container Terminal Burchardkai (CTB)	Intermodal terminal	Bei St. Annen 1 20457 Hamburg Germany	HHLA Container Terminal Burchardkai GmbH T +49 40 30880 info@hhla.de www.hhla.de
Hamburg Altenwerder CTA	Intermodal terminal	Am Balinkai 1 21129 Hamburg Germany	HHLA Container Terminal Altenwerder GmbH T +49 40 533090 F +49 40 533092129 info@hhla.de www.hhla.de
Hamburg Wallmann	Intermodal terminal	Pollhornweg 31-39 21107 Hamburg Germany	Wallmann & Co. (GmbH & Co. KG) HD. Wilde T +49 40 75207230 F +49 40 751276 h.wilde@wallmann-hamburg.de www.wallmann-hamburg.de
Schenken Deutschland AG	Railport/ Rail logistics centre	Eversween 29 21107 Hamburg Germany	
Hamburg BUSS Hansa Terminal	Intermodal terminal	Am Travehafen 20457 Hamburg Germany	Buss Hansa Terminal GmbH & Co. KG Peter Geest T +49 40 751933031 F +49 40 751933100 p.geest@buss-ports.de www.buss-port-services.de
AMB Steinwerder Distribution Center B.V.	Railport/ Rail logistics centre	Nordersand 2 20457 Hamburg Germany	
PCH Packing Center Hamburg GmbH	Railport/ Rail logistics centre	Indiastraße 4 20457 Hamburg Germany	
Hamburg Süd-West- Terminal	Intermodal terminal	Am Kamerunkai 5 20457 Hamburg Germany	C. Steinweg GmbH & Co. KG T +49 40 789500 F +49 40 78950193 info@csteinweg.de www.hamburg.steinweg.com

Hamburg O´Swaldkai	Intermodal terminal	Dessauer Straße 10 20457 Hamburg Germany	Unikai Lagerei & Speditionsgesellschaft mbH Michael Sieck T +49 40 72002100 F +49 40 72002101 nfo@unikai.de www.unikai.de
Maschen Rbf	Station with public siding	Hörstener Straße 21220 Maschen Germany	DB Netz AG www.dbnetz.de
Winsen (Luhe) Süd	Station with public siding	An der Kleinbahn 39 21423 Winsen (Luhe) Germany	Osthannoversche Eisenbahnen AG (OHE) T +49 5141 276 0 www.ohe-transport.de
Lüneburg	Station with public siding	Pirolweg 21337 Lüneburg Germany	DB Netz AG www.dbnetz.de
Uelzen	Station with public siding	29525 Uelzen Germany	Osthannoversche Eisenbahnen AG (OHE)
Salzwedel	Station with public siding	29410 Salzwedel Germany	DB Netz AG www.dbnetz.de
Stendal	Station with public siding	Lüderitzer Straße 39576 Stendal Germany	DB Netz AG www.dbnetz.de
Tangerhütte	Station with public siding	Germany	DB Netz AG www.dbnetz.de
Rostock			
GTC Rostock	Intermodal terminal	Am Hansakai 14 18147 Rostock Germany	Euroports General Cargo Terminal GmbH T + 49 381 6662 320 F + 49 381 6662 525 gct.info@euroports.de www.portofrostock.de
Rostock Trimodal- RTM	Intermodal terminal	Am Skandinavienkai 7 18147 Rostock Germany	Rostock Trimodal GmbH Gudrun Schümann T +49 381 6662 200 F +49 381 6662 355 rtm@portofrostock.de rtm-terminal@portofrostock.de www.rostock-port.de
Rostock Seehafen Süd	Station with public siding	Petersdorfer Str. 18147 Rostock Germany	DB Netz AG www.dbnetz.de
Railport Rostock	Railport/ Rail logistics centre	18147 Rostock Germany	DB Schenker Rail www.dbschenker.hafas.de
Laage	Station with public siding	18299 Laage Germany	DB Netz AG www.dbnetz.de
Waren (Müritz)	Station with public siding	Bahnhofsplatz 17192 Waren (Müritz) Germany	DB Netz AG www.dbnetz.de
Neustrelitz Süd	Station with public siding	17235 Neustrelitz Hafen Germany	DB Netz AG www.dbnetz.de
Oranienburg	Station with public siding	16515 Oranienburg Germany	DB Netz AG www.dbnetz.de

Birkenwerder (b Berlin)	Station with public siding	Unter den Ulmen 16547 Birkenwerder Germany	DB Netz AG T +49(0)30 297-40173 www.dbnetz.de
Berlin			
Berlin Weshafen	Intermodal terminal	Westhafenstraße 1 13353 Berlin Germany	BEHALA Berliner Hafen- und Lagerhausgesellschaft mbH Kevin Lietz T +49 30 39095326 F +49 30 39095327 k.lietz@behala.de www.behala.de
Berlin Nordost	Station with public siding	Wassergrundstraße 13053 Berlin Nordost Germany	DB Netz AG www.dbnetz.de
Berlin-Grünau	Station with public siding	Gründerstraße 12527 Berlin-Grünau Germany	DB Netz AG www.dbnetz.de
Baruth (Mark)	Station with public siding	15837 Baruth (Mark) Germany	DB Netz AG www.dbnetz.de
LDZ Elsterwerda	Intermodal terminal	Roland-Schmid-Straße 04910 Elsterwerda Germany	Hans Peter Hofmann Denis Hofmann T +49 151 17112397 / 03533 48140 F +49 3533 481481 d.hofmann@ldz-hofmann.de www.ldz-hofmann.de
Dresden			
Dresden- Friedrichstadt	Station with public siding	01067 Dresden Germany	DB Netz AG www.dbnetz.de
Dresden- Friedrichstadt GVZ	Intermodal terminal	Potthoffstr. 6 01159 Dresden Germany	DB Intermodal Services GmbH Ingo Schmidt T +49 351 6529910 F +49 351 6529939 gerald.seifert@db-intermodal-services.de www.db-intermodal.com
Alberthafen Dresden- Friedrichstadt	Intermodal terminal	Magdeburger Str. 58 01067 Dresden Germany	Sächsische Binnenhäfen Oberelbe GmbH Christine Kucklick T +49 351 4982248 christine_kucklick@binnenhafen- sachsen.de www.binnenhafen-sachsen.de/

Czech Republic

Object	Facility type	Facility address	Facility contact data
Děčín			
Prístav Děčín	Intermodal terminal	Loubská 704/9 40501 Decin Czech republic	Cesko-saske pristavy s.r.o. Jiri Duben T +00 420412589140 Jiri.duben@csp-labe.cz www.binnenhafen-sachsen.de
Děčín	Marshalling yard		www.szdc.cz
TSC Lovosovice	Intermodal terminal	Lukavecka 1 41002 Lovosice Czech Republic	Trans-Sped-Consult s.r.o. Jan Zidka T +420 777 344 003 jan.zidka@telecom.cz www.trans-sped-consult.eu

CP Container Terminal Mělník	Intermodal terminal	Celní 144 27601 Mělník Czech republic	České přístavy, j.s.c. Pavel Nemnemec@czechports.cz T +42 0315643101 www.czechports.cz
Havlíčkův Brod	Marshalling yard		www.szdc.cz
Praha			
CSKD Terminal Praha Žížkov	Intermodal terminal	Jana Želivského 2 13000 Praha Czech Republic	Rail Cargo Operator- CSKD s.r.o. Jirí Vlcek T +420 220193200 vlcek@intrans.cz http://www.railcargooperator.cz/
Terminal Praha- Uhříněves	Intermodal terminal	Podleska 926/5 104 00 Praha Czech Republic	METRANS a.s. Martin Horinek T +420 267 293136 horinek@metrans.cz www.metrans.eu
Praha Libeň	Marshalling yard		www.szdc.cz
Česká Třebová			
Rail Hub- Terminal Česká Třebová	Intermodal terminal	Rybník 276 560 02Česká Třebova Czech Republic	METRANS a.s. Mr. Kotrba T +420 267 293 401 kotrba@metrans.cz www.metrans.eu
Česká Třebová	Marshalling yard		
Brno			
CSKD Terminal Brno	Intermodal terminal	K terminálu 614/11 61900 Brno Czech republic	Rail Cargo Operator- CSKD s.r.o. T +420 220 19 32 00 F +420 20 19 32 20 cskd@intrans.cz www.intrans.cz
Brno Maloměřice	Marshalling yard		www.szdc.cz
CSKD Terminal Přerov	Intermodal terminal	Horní Moštěnice 75117 Přerov-Horní Moštěnice Czech Republic	Rail Cargo Operator- CSKD s.r.o. Josef Orsulik T +420 581 224 108 F +421 581 224 106 kpprerov@railcargooperator.cz www.intrans.cz
Terminal Ostrava- Senov	Intermodal terminal	Tesinska 1816 73934 Senov Czech Republic	METRANS, a.s. Jiri Bruna T +420 267 293 102 bruna@metrans.cz www.metrans.eu
Kolín seř.n.	Marshalling yard		www.szdc.cz
Pardubice	Marshalling yard		www.szdc.cz
Kralupy nad Vltavou	Marshalling yard		www.szdc.cz
Nymburk	Marshalling yard		www.szdc.cz

Austria

Object	Facility type	Facility address	Facility contact data
Wien Nordwestbahnhof CCT	Intermodal terminal	Taborstrasse 95-97 1200 Wien Austria	Mainu Leopold Schafhauser T +43 1 9300034785 F +43 1 9300032644 loepold.schafhauser@oebb.at www.oebb.at
Wien Cont Container Terminal GmbH	Intermodal terminal	Freudenauer Hafenstr. 12 1020 Wien Austria	Wiencont Container Terminal GmbH Robert Groiß T +43 1 7277210 groiss@wiencont.com www.wiencont.com
Wien Zentralverschi ebebahnhof	Marshalling yard		www.oebb.at
Wien Inzersdorf (under construction)			www.oebb.at

Slovakia

Object	Facility type	Facility address	Facility contact data
Bratislava			
Bratislava Palenisko	Intermodal terminal	Pribinova 24 82109 Bratislava Slovakia	SPaP a.s. T +421 2 58271 111 F +421 2 58271 114 spap@spap.sk www.spap.sk
Bratislava UNS/ Slovnaft	Terminal	Vlečka Slovnaft, a.s. Vlčie hrdlo 1 824 12 Bratislava Slovakia	Slovnaft a.s., Bratislava Ing. Ján Čerepán jan.cerepan@slovnaft.sk
UKV Terminal Bratislava ÚNS	Intermodal terminal	Lúčna ul. 12 82109 Bratislava Slovakia	Rail Cargo Operator - CSKD s.r.o. František Papuga T +421 903 744 857 F +421 903 744 857 papuga@intrans.sk www.railcargo.com
Bratislava východ	Marshalling yard		www.zsr.sk
Devínska Nova Ves	Marshalling yard		www.zsr.sk
CY Green Sládkovičovo	Intermodal terminal	Košútska cesta 1663 92521 Sládkovičovo Slovakia	Green Integrate Logistics Norbert Schaffer Jan Dvorecky T +421 911 500 494 F +421 317842341 nschaffer@eu.green-logistics.com jdvorecky@eu.green-logistics.com www.green-logistics.com
Dunajská Streda	Intermodal terminal	Povodská 18 92901 Dunajská Streda Slovakia	Metrans (Danubia) a.s. Mr. Jiri Samek T +420 267 293 102 samek@metrans.cz www.metrans.eu

Štúrovo	Intermodal terminal	Továrenská 1 943 03 Štúrovo Slovakia	BPŠ Railway Zoltán Nagy T Tel. + 421 (0) 36 756 1103 zoltan18@gmail.com www.sturovorailway.sk
Nové Zámky	Marshalling yard		www.zsr.sk
Komárno zr.st.	Marshalling yard		www.zsr.sk
Štúrovo	Marshalling yard		www.zsr.sk

Hungary

Object	Facility type	Facility address	Facility contact data
Sopron			
Sopron Terminal	Intermodal terminal	Ipar krt. 21 9400 Sopron Hungary	Gysev Cargo Zrt Tóth Péter T 0036 99 577161 F 0036 99 577334 toth.peter@gysevcargo.hu www.gysevcargo.hu
Railport Sopron	Railport/Rail logistic centre	Sopron Hungary	DB Schenker Rail dbschenker.hafas.de
Logistics Service Centre Sopron	Railport/Rail logistic centre	Ipar körút 21 9400 Sopron Hungary	Gysev Cargo László Cseh T +36(99)517 267 or 427 F +36(99)517 314 cseh.laszlo@gysevcargo.hu www.gysevcargo.hu
Győr			
Terminal ÁTI Győr	Intermodal terminal	Kandó K. u. 17 9025 Győr Hungary	ÁTI DEPO ZRt. T +36 96 512 991 www.atidepot.hu
Port of Győr-Gőnyű	Intermodal terminal	Kikötö 1 H-9011 Györ-Károlyháza Hungary	Kikötö Zrt. Mr. Ákos Pintér T +36 96 544 200 F +36 96 544 204 pinterportofgyor.hu
Railport Győr	Railport/Rail logistic centre	Győr Hungary	DB Schenker Rail dbschenker.hafas.de
Győr	Marshalling yard		www.vpe.hu
Szolnok			
Szolnok Logistics Service Centre	Terminal	Téglagyári út. 36 5000 Szolnok Hungary	T +36 56 500 100 F +36 56 344 524 logiszol@logiszol.t-online.hu
MÁV Kombiterminál Szolnok	Intermodal terminal	Jubileum tér 1-3 5002 Szolnok Hungary	MÁV Kombiterminál Kft. Béláné Nagy T +36 56 423 015 F +36 56 423 015 terminal.szolnok@mavkombi.hu
Szolnok	Marshalling yard		www.vpe.hu

Railport Szajol	Railport/Rail logistic centre	Szajol Hungary	DB Schenker Rail dbschenker.hafas.de
Székesfehérvár Terminal	Intermodal terminal	Vásárhelyi út 7. 8000 Székesfehérvár Hungary	Kombisztar Szekesfehervar T +36 22 502 810 F +36 22 502 811 kombisztar@axelero.hu www.logsped.hu/kszkont.htm
Hegyeshalom	Marshalling yard		www.vpe.hu
Komárom	Marshalling yard		www.vpe.hu
Budapest			
Budapest Szabadkikötő	Terminal	Weiss Manfréd út 5-7 H-1211 Budapest Hungary	T +36 1 278 3102 F + 36 1 276 3978 info@bszl.hu
Budapest BILK	Intermodal terminal	Európa útca. 4 1239 Budapest Hungary	BILK Kombiterminal Co. Ltd. Mr. Istvan Huszti T +36 1 289 6000 F +36 1 289 6060 bilkkombi@bilkkombi.hu www.railcargobilk.hu
Ferencváros	Marshalling yard		www.vpe.hu
TransSped Debrecen	Terminal		www.transmecgroup.com
Békésczaba	Marshalling yard		www.vpe.hu

Romania

Object	Facility type	Facility address	Facility contact data
Oradea			
Railport Oradea	Railport/ Rail logistics centre	Oradea Romania	DB Schenker Rail dbschenker.hafas.de
Oradea Est Terminal	Intermodal terminal	Strada Peței 2 410035 Oradea Romania	SC INTERCARPATIA S.R.L. Leon Petric T +40 725 561 223 F +40 359 802 303 leon@intercarpatia.ro www.intercarpatia.ro
Transmec Intermodal Vest Oradea	Terminal		www.transmecgroup.com
Allianso - Ploiești (Crangul lui Bot)	Terminal		T + 40 (0)344228200 www.alliansoterminal.eu
Coșlariu	Marshalling yard		www.cfr.ro

Arad							
Railport Arad SRL	Railport	315200 Curtici FN Arad County Romania	T+40 357100189 F+40 357100190 office@railportarad.ro				
Arad	Marshalling yard		www.cfr.ro				
Semenic	Intermodal terminal	Calea Timisoara 2 300383 Timisoara Romania	CFR Marfă S.A. Elena Paier T +40 256204832 F +40 256204832 office@cfrmarfa.com www.cfrmarfa.cfr.ro				
Ronaț Triaj	Marshalling yard		www.cfr.ro				
Ploiești Triaj	Marshalling yard		www.cfr.ro				
Caransebeș Triaj	Marshalling yard		www.cfr.ro				
Craiova							
Craiova	Intermodal terminal	Aleea Garlesti 1 200778 Craiova Romania	CFR Marfă S.A. Simona Ilie, Mihaela Craciun T +40 251419197 F +40 251419360 office@cfrmarfa.com www.cfrmarfa.cfr.ro				
Craiova	Marshalling yard		www.crf.ro				
Brasov							
Brasov	Intermodal terminal	str. Timis Triaj nr. 1 500240 Brasov Romania	Rofersped S.A. Sorin Zbengheci sorin.zbengheci@rofersped.ro www.rofersped.ro				
Brasov Triaj	Marshalling yard		www.cfr.ro				
Tibbett Logistics București (Chiajna)	Terminal	SC Tibbett Logistics SRL 1-7 Italia Street, Unit 13 P3 Logistics Park RO 077040 Chiajna Ilfov RomaniaT + 40 31 2 F + 40 31 2 www.tibbettle					
Terminalul Mediaș	Intermodal terminal	Strada Gării, nr.29, Mediaş Romania	T +40 21 224 14 67/68 F +40 21 224 39 05 www.rofersped.ro www.cfrmarfa.com				

Bucuresti										
Bucurestii Noi	Intermodal terminal	Str. Drumul Sabarenilor No.1 060646 Bucharest Romania	CFR Marfă S.A. Lucica Constantin T +40 212126197 F +40 212126197 office@cfrmarfa.com www.cfrmarfa.cfr.ro							
Bucuresti Triaj	Marshalling yard		www.cfr.ro							
Constanta										
Railport Constanta	Railport/ Rail logistics centre	Constanta Romania	www.dbschenker.hafas.de							
Constanta Port	Intermodal terminal	Incinta Port Constanta Gara Maritima 900900 Constanta Romania	T +40 241611540 F +40 241619512 www.portofconstantza.com							
DP World Constanta	Intermodal terminal	Administrative Bldg. Pier II-S 900900 Constanta Romania	DP World Constanta Rowan Bullock T +40 241 70 01 00 F +40 241 60 22 54 commercial@csct.ro www.dpworld.ro							

Bulgaria

Object	Facility type	Facility address	Facility contact data
Russe			
Railport Russe	Railport/ Rail logistics centre	Russe Bulgaria	www.dbschenker.hafas.de
Ruse-Center Port Terminal	Intermodal terminal	№ 22 "Pristanishtna" Street 7000 Russe Bulgaria	Port Complex Rousse T +359 82 880 999 F +359 82 825 148 office@port-ruse-bg.com www.port-ruse-bg.com
Sofia			
Yana Sofia Intermodal terminal	Intermodal terminal	1A Sv. Georgi Pobedonosets Str. 1849 Sofia Bulgaria	Ecologistics Ltd. Lyubomir Syarov T +359 2 421 95 13 F +359 2 421 95 14 l.syarov@ecologistics.bg www.ecologistics.bg
Co-modal Terminal Voluyak	Railport/Rail logistics centre	Sofia-Voluyak Bulgaria	Trans Express Ivan Petrov T +359 2 91977 F +359 2 943 4777 transexpress@transexpress.bg www.transexpress.bg
Railport Sofia	Railport/Rail logistics centre	Sofia Bulgaria	www.dbschenker.hafas.de

Stara Zagora	Intermodal terminal	Stara Zagora Railway Station 6000 Stara Zagora Bulgaria	Metalimpex T +359 42 626 752				
Port of Burgas	Intermodal terminal	1 Prince Alexander Battenberg Str. 8000 Bourgas Bulgaria	Port of Burgas Authority Nikolay Tishev T +359 56 822 222 nikolay_tishev@port-burgas.com www.port-burgas.bg				

Greece

Object	Facility type	Facility address	Facility contact data		
Promachonas Kulata	Marshalling yard		www.ose.gr		
Komotini	Station with public siding	69100 Komotini Greece	TRAINOSE T +302310 599293 F +302105297334 info@osenet.gr www.trainose.gr		
Xanthi	Station with public siding	67100 Xanthi Greece	TRAINOSE T +302310 599293 info@trainose.gr www.trainose.gr		
Drama	Station with public siding	66100 Drama Greece	TRAINOSE T +302310 599293 F +302105297334 info@trainose.gr www.trainose.gr		
Serres	Station with public siding	62125 Serres Greece	TRAINOSE T +302310 599293 F +302105297334 info@trainose.gr www.trainose.gr		
Thessaloniki					
Thessaloniki Port Sempo	Intermodal terminal	TO 104 67 54110 Thessaloniki Greece	THPA - Container Terminal D. Tsitsamis T +30 2310 593 620 F +30 2310 593 650 dtsitsamis@thpa.gr www.thpa.gr		
Thessaloniki Port B	Station with public siding	Port of Thessaloniki B 54110 Thessaloniki Greece	THPA C.Stagos T +30 2310 593 340 F +30 2310 593 400 sfassa@thpa.gr www.thpa.gr		

Thessaloniki Terminal	Intermodal terminal, Station with public siding	Old Station Thessaloniki 54645 Thessaloniki Greece	TRAINOSE T +30 2310 599293 ics@trainose.gr www.ics.trainose.gr		
Port of Thessaloniki	Intermodal terminal	P.O.Box 10467 54110 Thessaloniki Greece	Thessaloniki Port Authority SA T +302310593601 F +302310593647 info@thpa.gr www.thpa.gr		
Thesaloniki railway yard	Marshalling yard		www.ose.gr		
SRS-Sindos Railcontainer Sevices	Intermodal terminal	P.O. Box 1099, Industrial Area 57022 Sindos, Thessaloniki Greece	GARTNER Hellas Ltd. Dimitri Ladopoulos T +30 2310 570 740 F +30 2310 576 998 info@gartnerhellas.com <u>www.gartnerkg.com</u>		
Logistics center Sindos	Station with public siding	OIK. Tetragono 61 57022 Sindos, Thessaloniki Greece	Schenker Logistic Klaus Kraetzschmar T +302310 572 572 F +302310 572 592 info.greece@dbschenker.com <u>www.dbschenker.gr</u>		
Rail Cargo Logistic	Railport/Rail logistics centre	DA 13 57022 Sindos, Thessaloniki Greece	Rail Cargo Logistics Goldair T +30 211 1804246 info@railcargolg.com <u>www.railcargolg.com</u>		
Makios	Intermodal terminal	5th klm. Thessaloniki- Kalochori 54628 Gefyra Greece	MAKIOS LOGISTICS Thrasyvoulos T. Makios T +30 2310 573100 F +30 2310 573132 thr_makios@makios.gr <u>www.makios.com.gr</u>		
Platy	Station with public siding	59032 Platy Greece	TRAINOSE T +302310 599293 F +302105297334 info@osenet.gr www.trainose.gr		
Katerini	Station with public siding	60100 Katerini Greece	TRAINOSE T +302310 599293 F +302105297334 info@osenet.gr www.trainose.gr		
Larissa	Station with public siding				
Valestinon	Station with public siding	37500 Valestino Greece	TRAINOSE T +30210 5297269 info@trainose.gr www.trainose.gr		

Volos Port	Intermodal terminal	Kentriki Provlita Argonafton 38334 Volos Greece	VPA T +30 242 103 1226 F +30 242 103 1115 admin@port-volos.gr www.port-volos.gr
Volos	Station with public siding	Mitropolitou Grigoriou 1 38334 Volos Greece	TRAINOSE T +30210 5297269 info@trainose.gr www.trainose.gr
Lianokladion	Station with public siding	35100 Stauros Greece	TRAINOSE T +302310 599293 F +302105297334 info@osenet.gr www.trainose.gr
Transcombi Express S.A.	Intermodal terminal	32009 Ag. Thomas Greece	Transcombi T +30 22620-56837 F +3022620-56838 support@transcombigroup.com www.transcombigroup.com
Pireus			
Thriassio	Intermodal terminal	19300 Aspropigos, Athens Greece	TRAINOSE T +30 210 5297269 ics@trainose.gr www.trainose.gr
Pireus Port Authorithy	Other	18863 Pireus, Athens Greece	OLP T +30 210 4060970 F +30 210 4060959 kalamarap@olp.gr www.olp.gr
Pireus Port Authorithy- Sempo	Intermodal terminal	18863 Pireus, Athens Greece	OLP T +30(210) 4090561 F +30(210) 4011515 olp-sempo-secr@olp.gr www.olp.gr
Sempo Neo Ikonio	empo Neo Ikonio Intermodal terminal 18863 Perama Greece		COSCO T +30 210-4099100 F +30 210-4099101 info@pct.com.gr www.pct.com.gr
Strimonas	Marshalling yard		www.ose.gr
Sindos	Marshalling yard		www.ose.gr
Lianokladi	Marshalling yard		www.ose.gr
Inoi	Marshalling yard		www.ose.gr

Source: www.railfreightlocations.eu

www.rfc7.eu

RFC 7 CID Book III TT 2017-2018 – Terminal Description

Appendix I

Modal split

Veen	Roa	d	Rai	Rail		Water		Air		e	Tetel and dama
Year	mill.tkm	%	mill.tkm	%	mill.tkm	%	mill.tkm	%	mill.tkm	%	Total mill. tkm
2009	307 547	63,4	95 834	19,8	55 652	11,5	10 187,7	2,1	15950	3,3	485 170,7
2010	313 104	61,8	107 317	21,2	62 278	12,3	7 487,5	1,5	16259	3,2	506 445,5
2011	323 833	62,8	113 317	22,0	55 027	10,7	7 716,8	1,5	15623	3,0	515 516,8
2012	307 009	61,5	110 065	22,1	58 488	11,7	7 237,0	1,5	16207	3,2	499 006,0
2013	305 744	60,7	112 613	22,3	60 070	11,9	7 335,7	1,5	18 180	3,6	503 942,7
2014	310 142	61,2	112 629	22,2	59 093	11,7	7 184,1	1,4	17541	3,5	506 589,1

a. Modal split in freight traffic in Germany

b. Modal split in passenger traffic in Germany

N7	Noon Rail		Bus		Urbar	ı	Individu	ual	Total mill.
Year	mill. pkm	%	mill. pkm	%	mill. pkm	%	mill. pkm	%	pkm
2009	81 206	7,80	62 100	5,97	16 500	1,59	881 100	84,65	1 040 906,00
2010	82 837	7,90	61 800	5,90	16 300	1,56	887 000	84,65	1 047 937,00
2011	85 400	8,07	61 400	5,80	16 600	1,57	894 400	84,55	1 057 800,00
2012	93 918	8,81	59 400	5,57	16 600	1,56	896 300	84,06	1 066 218,00
2013	89 450	8,36	60 500	5,66	16 700	1,56	903 100	84,42	1 069 750,00
2014	90 978	8,33	63 200	5,79	16 800	1,54	920 800	84,34	1 091 778,00

c. Modal split in freight traffic in the Czech republic

Year	Road		Rail		Wate	Water		Air		ne	Totalmill.tkm
rear	mill.tkm	%	mill.tkm	%	mill.tkm	%	mill.tkm	%	mill.tkm	%	1 otannin.tkm
2009	44 955	74,98	12 791	21,33	33	0,06	22,4	0,04	2156	3,60	59 957,4
2010	51 832	76,39	13 770	20,29	43	0,06	18,0	0,03	2191	3,23	67 854,0
2011	54 830	77,05	14 316	20,12	42	0,06	16,7	0,02	1954	2,75	71 158,7
2012	51 228	75,95	14 267	21,15	38	0,06	11,1	0,02	1907	2,83	67 451,1
2013	54 893	77,49	13 965	19,71	25	0,04	19,9	0,03	1 933	2,73	70 835,9
2014	54 092	76,38	14 574	20,58	27	0,04	30,8	0,04	2100	2,97	70 823,8

d. Modal split in passenger traffic in the Czech republic

Year	Rail		Bus		Urba	an	Individ	ual	Total mill nlm	
rear	r mill. pkm %		mill. pkm %		mill. pkm	%	mill. pkm	%	Total mill. pkm	
2009	6 472	6,23	16 100	15,50	9 000	8,66	72 300	69,60	103 872,00	
2010	6 559	6,82	17 000	17,68	9 000	9,36	63 600	66,14	96 159,00	
2011	6 669	6,90	15 800	16,34	8 700	9,00	65 500	67,76	96 669,00	
2012	7 196	7,45	15 300	15,84	9 500	9,83	64 600	66,88	96 596,00	
2013	7 512	7,70	15 700	16,10	9 600	9,84	64 700	66,35	97 512,00	
2014	7 644	7,63	16 700	16,66	9 600	9,58	66 300	66,14	100 244,00	

Veen	Year Road		Rail	Rail		Water		Air		Pipeline	
rear	mill. tkm	%	mill. tkm	%	mill. tkm	%	mill. tkm	%	mill. tkm	%	tkm
2009	29 075	53,76	17 767	28,39	2 003	3,70	341,5	0,63	7 304	13,51	54 078,5
2010	28 659	50,92	19 833	31,78	2 375	4,22	357,9	0,64	7 000	12,44	56 277,9
2011	28 542	50,46	20 345	32,33	2 123	3,75	383,4	0,68	7 228	12,78	56 564,4
2012	26 089	49,21	19 499	32,57	2 191	4,13	322,1	0,61	7 146	13,48	53 017,1
2013	24 213	45,50	19 278	33,70	2 353	4,42	326,4	0,61	8 392	15,77	53 218,4
2014	24 299	44,69	20 494	35,44	2 177	4,00	370,0	0,68	8 259	15,19	54 375,0

e. Modal split in freight traffic in Austria

f. Modal split in passenger traffic in Austria

Veen	Rai	1	Bus	5	Urba	in	Individ	ual	
Year	mill. pkm	%	mill. pkm	%	mill. pkm	%	mill. pkm	%	Total mill.pkm
2009	10 184	10,30	9 200	9,30	6 800	6,88	72 700	73,52	98 884,00
2010	10 263	10,20	10 000	9,93	6 900	6,85	73 500	73,02	100 663,00
2011	10 778	10,55	9 900	9,69	7 000	6,85	74 500	72,91	102 178,00
2012	11 211	10,95	9 900	9,67	7 100	6,93	74 200	72,45	102 411,00
2013	11 804	11,38	9 900	9,55	7 200	6,94	74 800	72,13	103 704,00
2014	11 981	11,34	10 100	9,56	7 000	6,62	76 600	72,48	105 681,00

g. Modal split in freight traffic in the Slovak republic

Year	Roa	d	Rail		Wate	er	Air		Pipeli	ne	Total mill. tkm
rear	mill. tkm	%	mill. tkm	%	mill. tkm	%	mill. tkm	%	mill. tkm	%	Totai mini, tkin
2009	27 705	67,68	6 931	16,93	899	2,20	0,2	0,00	5400	13,19	40 935,2
2010	27 575	65,94	8 054	19,26	1 189	2,84	N/A	-	5000	11,96	41 818,0
2011	29 179	67,82	7 912	18,39	931	2,16	N/A	•	5000	11,62	43 022,0
2012	29 693	70,12	7 468	17,64	986	2,33	N/A	•	4200	9,92	42 347,0
2013	30 147	67,92	8 335	18,78	1 006	2,27	N/A	-	4 900	11,04	44 388,0
2014	31 358	69,21	8 544	18,86	905	2,00	N/A	-	4500	9,93	45 307,0

h. Modal split in passenger traffic in the Slovak Republic

Year	Rail		Bus	5	Urba	n	Individ	ual	Total mill nlam
rear	mill. pkm	%	mill. pkm	%	mill. pkm	%	mill. pkm	%	Total mill. pkm
2009	2 264	6,59	5 400	15,71	300	0,87	26 400	76,82	34 364,00
2010	2 309	6,63	5 300	15,23	300	0,86	26 900	77,28	34 809,00
2011	2 431	6,92	5 500	15,66	300	0,85	26 900	76,57	35 131,00
2012	2 459	7,01	5 400	15,40	300	0,86	26 900	76,73	35 059,00
2013	2 485	7,04	5 300	15,02	300	0,85	27 200	77,09	35 285,00
2014	2 583	7,26	5 400	15,18	300	0,84	27 300	76,72	35 583,00

i. Modal split in freight traffic in Hungary

Veen	Roa	d	Rail		Wate	Water		Air		ne	Tatal will them
Year	mill. tkm	%	mill. tkm	%	mill. tkm	%	mill. tkm	%	mill. tkm	%	Total mill. tkm
2009	35 373	75,39	6 699	14,28	1 831	3,90	9,8	0,02	3010	6,41	46 922,8
2010	33 721	71,79	7 635	16,26	2 393	5,09	5,6	0,01	3214	6,84	46 968,6
2011	34 529	73,43	7 526	16,01	1 840	3,91	5,9	0,01	3119	6,63	47 019,9
2012	33 736	73,85	7 205	15,77	1 982	4,34	0,5	0,00	2760	6,04	45 683,5
2013	35 818	71,40	9 722	19,38	1 924	3,84	N/A	-	2 702	5,39	50 166,0
2014	37 517	71,76	10 158	19,43	1 811	3,46	N/A	-	2797	5,35	52 283,0

j. Modal split in passenger traffic in Hungary

Year	Rai	1	Bu	s	Urba	n	Individ	ual	Total mill.
rear	mill. pkm	%	mill. pkm	%	mill. pkm	%	mill. pkm	%	pkm
2009	8 004	9,86	16 300	20,07	2 500	3,08	54 400	66,99	81 204,00
2010	7 653	9,66	16 500	20,82	2 500	3,15	52 600	66,37	79 253,00
2011	7 763	9,82	16 500	20,87	2 500	3,16	52 300	66,15	79 063,00
2012	7 769	9,81	17 100	21,60	2 500	3,16	51 800	65,43	79 169,00
2013	7 806	9,86	17 100	21,59	2 500	3,16	51 800	65,40	79 206,00
2014	7 710	9,54	17 600	21,78	2 800	3,46	52 700	65,21	80 810,00

k. Modal split in freight traffic in Romania

Year	Roa	d	Rai	1	Wate	er	Air	•	Pipelii	ne	Total mill. tkm
rear	mill. tkm	%	mill. tkm	%	mill. tkm	%	mill. tkm	%	mill. tkm	%	Total IIIII. tKIII
2009	34 269	60,00	9 832	17,21	11 765	20,60	4,0	0,01	1243	2,18	57 113,0
2010	25 889	49,04	11 587	21,95	14 317	27,12	5,2	0,01	996	1,89	52 794,2
2011	26 349	50,10	13 924	26,48	11 409	21,70	6,1	0,01	900	1,71	52 588,1
2012	29 662	53,32	12 662	22,76	12 520	22,50	5,6	0,01	785	1,41	55 634,6
2013	34 026	57,02	12 567	21,06	12 242	20,52	5,3	0,01	829	1,39	59 669,3
2014	35 136	58,59	12 085	20,15	11 760	19,61	5,3	0,01	984	1,64	59 970,3

I. Modal split in passenger traffic in Romania

Year	Rai	1	Bu	s	Urba	n	Individ	lual	Total mill nlum
rear	mill. pkm	%	mill. pkm	%	mill. pkm	%	mill. pkm	%	Total mill. pkm
2009	6 128	6,04	12 800	12,62	7 000	6,90	75 500	74,44	101 428,00
2010	5 437	5,43	12 000	12,00	7 100	7,10	75 500	75,47	100 037,00
2011	5 063	5,12	11 800	11,92	7 100	7,17	75 000	75,79	98 963,00
2012	4 550	4,48	12 600	12,40	7 500	7,38	77 000	75,75	101 650,00
2013	4 382	4,15	12 900	12,23	7 800	7,39	80 400	76,22	105 482,00
2014	4 971	4,43	14 100	12,56	8 000	7,13	85 200	75,89	112 271,00

m. Modal split in freight traffic in Bulgaria

Year	Road	ł	Rail		Wate	er	Air		Pipelin	e	Total mill.
rear	mill. tkm	%	mill. tkm	%	mill. tkm	%	mill. tkm	%	mill. tkm	%	tkm
2009	17 742	66,48	3 145	11,51	5 436	20,37	1,7	0,01	437	1,64	26 689,7
2010	19 433	67,29	3 064	10,33	6 048	20,94	2,1	0,01	415	1,44	28 880,1
2011	21 214	72,71	3 291	10,86	4 310	14,77	2,3	0,01	481	1,65	29 175,3
2012	24 372	73,80	2 907	8,26	5 349	16,20	1,9	0,01	573	1,74	33 022,9
2013	27 097	75,91	3 246	7,26	5 374	15,05	1,7	0,00	633	1,77	35 696,7
2014	27 854	77,19	3 4 3 9	7,13	5 074	14,06	1,7	0,00	583	1,62	36 084,7

n. Modal split in passenger traffic in Bulgaria

Veen	Rai	1	Bu	S	Urba	n	Individ	ual	
Year	mill. pkm	%	mill. pkm	%	mill. pkm	%	mill. pkm	%	Total mill.pkm
2009	2 1 3 8	3,58	10 500	17,61	700	1,17	46 300	77,64	59 638,00
2010	2 090	3,46	10 600	17,52	900	1,49	46 900	77,53	60 490,00
2011	2 059	3,33	10 800	17,46	900	1,45	48 100	77,76	61 859,00
2012	1 870	2,96	10 500	16,65	1 000	1,59	49 700	78,80	63 070,00
2013	1 821	2,82	10 300	15,96	1 000	1,55	51 400	79,66	64 521,00
2014	1 698	2,50	11 500	16,94	700	1,03	54 000	79,53	67 898,00

	Road	d	Rail		Wate	r	Air		Pipeli	ne	
Year	mill. tkm	%	mill. tkm	%	mill. tkm	%	mill. tkm	%	mill. tkm	%	Total mill. tkm
2009	28 585	97,33	552	1,88	0	0,00	31,4	0,11	200	0,68	29 368,4
2010	29 815	97,33	614	2,00	0	0,00	4,9	0,02	200	0,65	30 633,9
2011	20 597	97,37	352	1,66	0	0,00	4,2	0,02	200	0,95	21 153,2
2012	20 839	97,72	283	1,33	0	0,00	2,3	0,01	200	0,94	21 324,3
2013	18 970	97,75	237	1,22	0	0,00	0,6	0,00	200	1,03	19 407,6
2014	19 223	97,32	311	1,57	0	0,00	19,4	0,10	200	1,01	19 753,4

o. Modal split in freight traffic in Greece

p. Modal split in passenger traffic in Greece

Veer	Rai	1	Bu	S	Urba	ın	Individ	ual	
Year	mill. pkm	%	mill. pkm	%	mill. pkm	%	mill. pkm	%	Total mill.pkm
2009	1 467	1,17	20 900	16,67	1 700	1,36	101 300	80,80	125 367,00
2010	1 383	1,12	21 100	17,05	1 700	1,37	99 600	80,46	123 783,00
2011	958	0,78	21 200	17,35	1 700	1,39	98 300	80,47	122 158,00
2012	832	0,69	21 100	17,51	1 700	1,41	96 900	80,39	120 532,00
2013	1 056	0,88	21 000	17,56	1 700	1,42	95 800	80,13	119 556,00
2014	1 072	0,89	21 000	17,40	1 700	1,41	96 900	80,30	120 672,00

Source:

Freight transport

Rail transport, Road transport, Inland transport

Eurostat (http://ec.europa.eu/eurostat/data/database)

Air transport

The World Bank

http://data.worldbank.org/indicator/IS.AIR.GOOD.MT.K1?end=2015&locations=DE&start =1970&view=chart

Passenger transport:

Rail transport

Eurostat (http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do)

Bus transport, Urban transport, Individual transport

Statistical pocketbook 2016

(https://ec.europa.eu/transport/facts-fundings/statistics/pocketbook-2016_en)

Appendix J

Rail freight transport by group of goods

a. Standard goods classification

- 1. Products of agriculture, hunting, and forestry, fisth and other fishing products
- 2. Coal and lignite, crude petroleum and natural gas
- 3. Metal ores and other mining and quarrying products, peat, uranium and thorium
- 4. Food products, beverages and tabacco
- 5. Textiles and textile products, leather and leather products
- 6. Wood and product of wood and cork (except furniture), articles of straw and plaiting materials, pulp, paper and paper products, printed matter and recorded media
- 7. Coke and refined petroleum products
- 8. Chemicals, chemical product, and man-made fibers, rubber and plastic products, nuclear fuel
- 9. Other non metallic mineral products
- 10. Basic metals, fabricated metal products, except machinery and equipment
- 11. Machinery and equipment n.e.c., office machinery and computers, electrical machinery and apparatus n.e.c., radio, television and communication equipment and apparatus, medical, precision and optical instruments, watches and clocks
- 12. Transport equipment
- 13. Furniture, other manufactured good n.e.c.
- 14. Secondary raw materials, municipal wastes and other wastes
- 15. Mail, parcels
- 16. Equipment and material utilized in the transport of goods
- 17. Good moved in the course of household and office removals, baggage and articles accompanying travellers, motor vehicles being moved for repair, other non market goods n.e.c.
- 18. Grouped goods: a mixture of types of goods which are transported together
- Unidentifiable goods: goods which for any reason cannot be identified and therefore cannot be assigned to groups 01-16
- 20. Other goods n.e.c.

b. Standard goods classification in Germany

Germany (2015)	%
Unidentifiable goods: goods which for any reason cannot be identified and therefore cannot be assigned to groups 01-16	21,12
Basic metals, fabricated metal products, except machinery and equipment	16,09
Metal ores and other mining and quarrying products, peat, uranium and thorium	13,68
Coke and refined petroleum products	11,59
Coal and lignite, crude petroleum and natural gas	10,98
Chemicals, chemical product, and man-made fibers, rubber and plastic products, nuclear fuel	8,07
Transport equipment	3,85
Secondary raw materials, municipal wastes and other wastes	3,75
Other non-metallic mineral products	3,48
Wood and product of wood and cork (except furniture), articles of straw and plaiting materials, pulp, paper and paper products, printed matter and recorded media	2,49
Grouped goods: a mixture of types of goods which are transported together	1,28
Equipment and material utilized in the transport of goods	1,15
Product of agriculture, hunting and forestry, fish and other fishing products	1,11
Food products, beverages and tobacco	0,54
Other goods n.e.c.	0,47
Machinery and equipment n.e.c., office machinery and computers, electrical machinery and apparatus n.e.c., radio, television and communication equipment and apparatus, medical, precision and optical instruments, watches and clocks	0,31
Furniture, other manufactured good n.e.c.	0,02
Mail, parcels	0,01
Textiles and textile products, leather and leather products	0,01
Good moved in the course of household and office removals, baggage and articles accompanying travelers, motor vehicles being moved for repair, other non-market goods n.e.c.	0,01
Total	100,00

c. Standard goods classification in Czech Republic

Czech Republic (2015)	%
Coal and lignite, crude petroleum and natural gas	30,96
Grouped goods: a mixture of types of goods which are transported together	14,20
Metal ores and other mining and quarrying products, peat, uranium and thorium	12,23
Unidentifiable goods: goods which for any reason cannot be identified and therefore cannot be assigned to groups 01-16	9,25
Coke and refined petroleum products	9,15
Basic metals, fabricated metal products, except machinery and equipment	6,07
Product of agriculture, hunting and forestry, fish and other fishing products	4,47
Chemicals, chemical product, and man-made fibers, rubber and plastic products, nuclear fuel	4,21
Secondary raw materials, municipal wastes and other wastes	2,99
Transport equipment	2,88
Other non-metallic mineral products	1,56
Wood and product of wood and cork (except furniture), articles of straw and plaiting materials, pulp, paper and paper products, printed matter and recorded media	0,97
Food products, beverages and tobacco	0,41
Other goods n.e.c.	0,39
Equipment and material utilized in the transport of goods	0,21
Machinery and equipment n.e.c., office machinery and computers, electrical machinery and apparatus n.e.c., radio, television and communication equipment and apparatus, medical, precision and optical instruments, watches and clocks	0,03
Textiles and textile products, leather and leather products	0,01
Furniture, other manufactured good n.e.c.	0,00
Mail, parcels	0,00
Good moved in the course of household and office removals, baggage and articles accompanying travelers, motor vehicles being moved for repair, other non-market goods n.e.c.	0,00
Total	100,00

d. Standard goods classification in Austria

Austria (2015)	%
Unidentifiable goods: goods which for any reason cannot be identified and therefore cannot be assigned to groups 01-16	35,60
Metal ores and other mining and quarrying products, peat, uranium and thorium	12,72
Basic metals, fabricated metal products, except machinery and equipment	8,27
Product of agriculture, hunting and forestry, fish and other fishing products	7,42
Coke and refined petroleum products	6,63
Secondary raw materials, municipal wastes and other wastes	6,20
Transport equipment	5,91
Wood and product of wood and cork (except furniture), articles of straw and plaiting materials, pulp, paper and paper products, printed matter and recorded media	5,26
Chemicals, chemical product, and man-made fibers, rubber and plastic products, nuclear fuel	4,49
Coal and lignite, crude petroleum and natural gas	3,46
Other non-metallic mineral products	1,69
Food products, beverages and tobacco	1,17
Equipment and material utilized in the transport of goods	0,89
Machinery and equipment n.e.c., office machinery and computers, electrical machinery and apparatus n.e.c., radio, television and communication equipment and apparatus, medical, precision and optical instruments, watches and clocks	0,21
Mail, parcels	0,02
Grouped goods: a mixture of types of goods which are transported together	0,02
Furniture, other manufactured good n.e.c.	0,02
Textiles and textile products, leather and leather products	0,00
Good moved in the course of household and office removals, baggage and articles accompanying travelers, motor vehicles being moved for repair, other non-market goods n.e.c.	0,00
Other goods n.e.c.	0,00
Total	100,00

e. Standard goods classification in Slovakia

Slovakia (2015)	%
Metal ores and other mining and quarrying products, peat, uranium and thorium	33,26
Other goods n.e.c.	16,62
Basic metals, fabricated metal products, except machinery and equipment	9,18
Coal and lignite, crude petroleum and natural gas	7,85
Product of agriculture, hunting and forestry, fish and other fishing products	7,78
Coke and refined petroleum products	6,86
Chemicals, chemical product, and man-made fibers, rubber and plastic products, nuclear fuel	6,86
Secondary raw materials, municipal wastes and other wastes	3,59
Unidentifiable goods: goods which for any reason cannot be identified and therefore cannot be assigned to groups 01-16	3,13
Transport equipment	1,96
Other non-metallic mineral products	1,36
Wood and product of wood and cork (except furniture), articles of straw and plaiting materials, pulp, paper and paper products, printed matter and recorded media	0,64
Equipment and material utilized in the transport of goods	0,45
Food products, beverages and tobacco	0,41
Machinery and equipment n.e.c., office machinery and computers, electrical machinery and apparatus n.e.c., radio, television and communication equipment and apparatus, medical, precision and optical instruments, watches and clocks	0,03
Furniture, other manufactured good n.e.c.	0,01
Good moved in the course of household and office removals, baggage and articles accompanying travelers, motor vehicles being moved for repair, other non-market goods n.e.c.	0,00
Textiles and textile products, leather and leather products	0,00
Grouped goods: a mixture of types of goods which are transported together	0,00
Mail, parcels	0,00
Total	100,00

f. Standard goods classification in Hungary

Hungary (2015)	%
Other goods n.e.c.	16,53
Metal ores and other mining and quarrying products, peat, uranium and thorium	15,97
Coal and lignite, crude petroleum and natural gas	14,39
Product of agriculture, hunting and forestry, fish and other fishing products	9,97
Unidentifiable goods: goods which for any reason cannot be identified and therefore cannot be assigned to groups 01-16	9,16
Coke and refined petroleum products	8,23
Chemicals, chemical product, and man-made fibers, rubber and plastic products, nuclear fuel	7,83
Basic metals, fabricated metal products, except machinery and equipment	7,38
Wood and product of wood and cork (except furniture), articles of straw and plaiting materials, pulp, paper and paper products, printed matter and recorded media	2,46
Other non-metallic mineral products	1,77
Secondary raw materials, municipal wastes and other wastes	1,75
Transport equipment	1,72
Machinery and equipment n.e.c., office machinery and computers, electrical machinery and apparatus n.e.c., radio, television and communication equipment and apparatus, medical, precision and optical instruments, watches and clocks	1,13
Food products, beverages and tobacco	0,92
Grouped goods: a mixture of types of goods which are transported together	0,44
Equipment and material utilized in the transport of goods	0,20
Furniture, other manufactured good n.e.c.	0,09
Textiles and textile products, leather and leather products	0,05
Mail, parcels	0,00
Good moved in the course of household and office removals, baggage and articles accompanying travelers, motor vehicles being moved for repair, other non-market goods n.e.c.	0,00
Total	100,00

g. Standard goods classification in Romania

Romania (2015)	%
Coal and lignite, crude petroleum and natural gas	35,87
Coke and refined petroleum products	30,49
Product of agriculture, hunting and forestry, fish and other fishing products	6,55
Chemicals, chemical product, and man-made fibers, rubber and plastic products, nuclear fuel	4,64
Metal ores and other mining and quarrying products, peat, uranium and thorium	4,44
Basic metals, fabricated metal products, except machinery and equipment	4,15
Wood and product of wood and cork (except furniture), articles of straw and plaiting materials, pulp, paper and paper products, printed matter and recorded media	3,84
Other non-metallic mineral products	3,41
Unidentifiable goods: goods which for any reason cannot be identified and therefore cannot be assigned to groups 01-16	2,40
Secondary raw materials, municipal wastes and other wastes	1,19
Food products, beverages and tobacco	1,13
Other goods n.e.c.	0,77
Equipment and material utilized in the transport of goods	0,39
Grouped goods: a mixture of types of goods which are transported together	0,28
Transport equipment	0,26
Machinery and equipment n.e.c., office machinery and computers, electrical machinery and apparatus n.e.c., radio, television and communication equipment and apparatus, medical, precision and optical instruments, watches and clocks	0,13
Good moved in the course of household and office removals, baggage and articles accompanying travelers, motor vehicles being moved for repair, other non-market goods n.e.c.	0,04
Textiles and textile products, leather and leather products	0,02
Furniture, other manufactured good n.e.c.	0,01
Mail, parcels	0,00
Total	100,00

h. Standard goods classification in Bulgaria

Bulgaria (2015)	%
Coal and lignite, crude petroleum and natural gas	23,13
Metal ores and other mining and quarrying products, peat, uranium and thorium	
Chemicals, chemical product, and man-made fibers, rubber and plastic products, nuclear fuel	
Coke and refined petroleum products	9,29
Basic metals, fabricated metal products, except machinery and equipment	6,32
Other non-metallic mineral products	6,20
Secondary raw materials, municipal wastes and other wastes	5,52
Grouped goods: a mixture of types of goods which are transported together	2,62
Food products, beverages and tobacco	
Wood and product of wood and cork (except furniture), articles of straw and plaiting materials, pulp, paper and paper products, printed matter and recorded media	
Transport equipment	
Product of agriculture, hunting and forestry, fish and other fishing products	
Unidentifiable goods: goods which for any reason cannot be identified and therefore cannot be assigned to groups 01-16	
Machinery and equipment n.e.c., office machinery and computers, electrical machinery and apparatus n.e.c., radio, television and communication equipment and apparatus, medical, precision and optical instruments, watches and clocks	
Equipment and material utilized in the transport of goods	0,28
Other goods n.e.c.	0,23
Textiles and textile products, leather and leather products	0,13
Furniture, other manufactured good n.e.c.	0,03
Mail, parcels	0,00
Good moved in the course of household and office removals, baggage and articles accompanying travelers, motor vehicles being moved for repair, other non-market goods n.e.c.	0,00
Total	100,00

i. Standard goods classification in Greece

Greece (2015)	%
Equipment and material utilized in the transport of goods	41,34
Basic metals, fabricated metal products, except machinery and equipment	
Wood and product of wood and cork (except furniture), articles of straw and plaiting materials, pulp, paper and paper products, printed matter and recorded media	
Other non-metallic mineral products	7,34
Coke and refined petroleum products	6,56
Product of agriculture, hunting and forestry, fish and other fishing products	5,42
Food products, beverages and tobacco	4,06
Coal and lignite, crude petroleum and natural gas	2,28
Unidentifiable goods: goods which for any reason cannot be identified and therefore cannot be assigned to groups 01-16	
Chemicals, chemical product, and man-made fibers, rubber and plastic products, nuclear fuel	1,64
Machinery and equipment n.e.c., office machinery and computers, electrical machinery and apparatus n.e.c., radio, television and communication equipment and apparatus, medical, precision and optical instruments, watches and clocks	
Furniture, other manufactured good n.e.c.	0,93
Metal ores and other mining and quarrying products, peat, uranium and thorium	0,00
Textiles and textile products, leather and leather products	0,00
Transport equipment	0,00
Secondary raw materials, municipal wastes and other wastes	0,00
Mail, parcels	0,00
Good moved in the course of household and office removals, baggage and articles accompanying travelers, motor vehicles being moved for repair, other non-market goods n.e.c.	
Grouped goods: a mixture of types of goods which are transported together	0,00
Other goods n.e.c.	0,00
Total	100,00

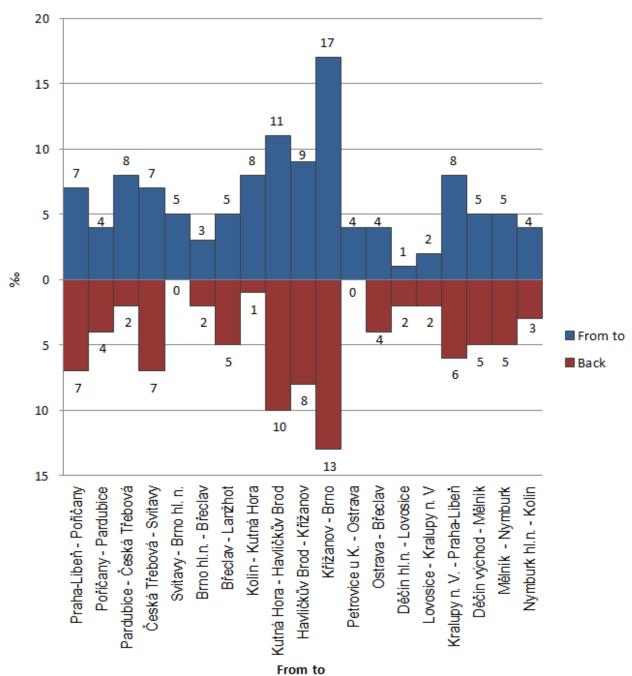
Source: Eurostat (Railway transport - goods transported, by group of goods - from 2008 onwards based on NST 2007 (1000 t, million tkm)

Appendix K

Gradient

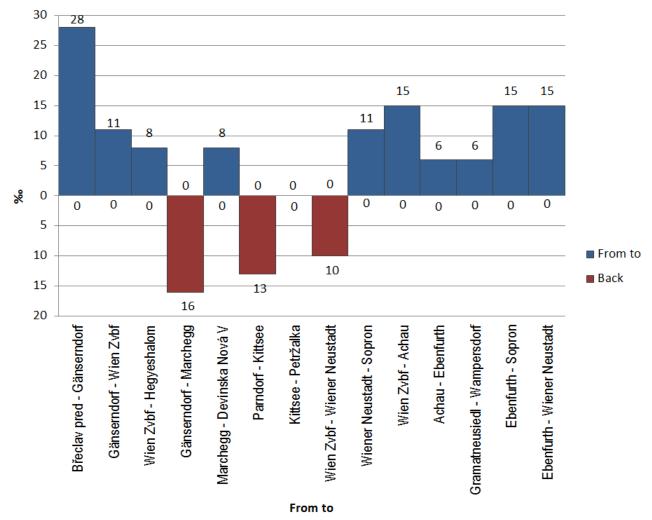
a. Gradient in Germany Line section	
Bremerhaven - Bremen	Gradient
Bremerhaven - Bremer Bremerhaven Seehafen DB-Grenze - Bremerhaven-Speckenbüttel	5 bis < 10
Bremerhaven-Speckenbüttel - Bremerhaven Hbf	$\frac{3 \text{ bis} < 10}{0 \text{ bis} < 5}$
Bremerhaven Hbf -Bremerhaven-Wulsdorf	$\frac{0.018 < 9}{5.018 < 10}$
Bremerhaven-Wulsdorf - Lübberstedt	$\frac{3 \text{ bis} < 10}{0 \text{ bis} < 5}$
Lübberstedt -Oldenbüttel	$\frac{6003 < 5}{5 \text{ bis} < 10}$
Oldenbüttel -Ritterhude	$\frac{3 \text{ bis} < 10}{0 \text{ bis} < 5}$
Ritterhude -Bremen-Burg	$\frac{6000 \times 50}{5000 \times 10}$
Bremen-Burg - Bremen Hbf	$\frac{3.018 < 10}{0.018 < 5}$
Wilhelmshaven - Bremen	0 018 < 5
Wilhelmshaven - Wilhelmshaven West	0 bis < 5
Wilhelmshaven West -Varel (Oldb)	$\frac{6000 \times 50}{5000 \times 10}$
Varel (Oldb) - Jaderberg	$\frac{3 \text{ bis} < 10}{0 \text{ bis} < 5}$
Jaderberg -Rastede	5 bis < 10
Rastede - Ofenerdiek	$\frac{3 \text{ bis} < 10}{0 \text{ bis} < 5}$
Ofenerdiek - Oldenburg (Oldb) Hbf	5 bis < 10
Oldenburg (Oldb) Hbf - Hoykenkamp	$\frac{0.016 < 10}{0.016 < 5}$
Hoykenkamp - Bremen Hbf	5 bis < 10
Bremen Hbf - Bremen-Mahndorf	< 20
Bremen - Magdeburg	
Bremen-Mahndorf - Langwedel	0 bis < 5
Langwedel - Dörverden	5 bis < 10
Dörverden - Dedensen-Gümmer	0 bis < 5
Dedensen-Gümmer - Ahlem	< 20
Ahlem - Hannover-Linden Hafen	0 bis < 5
Hannover-Linden Hafen - Misburg	5 bis < 10
Misburg - Lehrte	< 20
Lehrte - Hämelerwald	5 bis < 10
Hämelerwald - Vechelde	0 bis < 5
Vechelde - Braunschweig Hbf	5 bis < 10
Braunschweig Hbf - Braunschweig Schmiedekamp	10 bis < 15
Braunschweig Schmiedekamp - Braunschweig-Buchhorst	5 bis < 10
Braunschweig-Buchhorst - Schandelah	0 bis < 5
Schandelah - Königslutter	5 bis < 10
Königslutter - Frellstedt	0 bis < 5
Frellstedt - Helmstedt	< 20

Line section	Gradient
Helmstedt - Dreileben-Drackenstedt	5 bis < 10
Dreileben-Drackenstedt - Ochtmersleben	0 bis < 5
Ochtmersleben - Magdeburg-Sudenburg	5 bis < 10
Magdeburg-Sudenburg - Magdeburg-Neustadt	< 20
Magdeburg-Neustadt - Magdeburg-Herrenkrug	5 bis < 10
Magdeburg - Dresden	
Magdeburg-Herrenkrug - Biederitz	5 bis < 10
Biederitz - Gommern	0 bis < 5
Gommern - Zerbst/Anhalt	5 bis < 10
Zerbst/Anhalt - Rodleben	0 bis < 5
Rodleben - Coswig (Anh) Gbf	< 20
Coswig (Anh) Gbf - Lutherstadt Wittenberg-Piesteritz	0 bis < 5
Lutherstadt Wittenberg-Piesteritz - Lutherstadt Wittenberg Altstadt	5 bis < 10
Lutherstadt Wittenberg Altstadt - Fermerswalde	0 bis < 5
Fermerswalde - Falkenberg (Elster)	5 bis < 10
Falkenberg (Elster) - Neuburxdorf	0 bis < 5
Neuburxdorf - Röderau	< 20
Röderau - Weißig (b Großenhain)	0 bis < 5
Weißig (b Großenhain) - Leckwitz	5 bis < 10
Leckwitz - Weinböhla Haltepunkt	< 20
Weinböhla Haltepunkt - Coswig (bei Dresden)	5 bis < 10
Coswig (bei Dresden) - Radebeul Nord	< 20
Radebeul Nord - Radebeul Ost	5 bis < 10
Radebeul Ost - Dresden-Neustadt	< 20
Dresden-Neustadt - Dresden Mitte	5 bis < 10
Dresden Mitte - Dresden Hbf	10 bis < 15
Dresden Hbf - Dresden-Niedersedlitz Güteranlage (DHD)	0 bis < 5
Dresden - Bad Schandau	
Dresden-Niedersedlitz Güteranlage (DHD) - Bad Schandau Grenze	0 bis < 5
Dresden - Rostock	
Dresden Freiberger Straße - Dresden-Friedrichstadt	< 20
Dresden-Friedrichstadt - Dresden-Cotta (Bstg)	10 bis < 15
Dresden-Cotta (Bstg) - Dresden-Kemnitz	5 bis < 10
Dresden-Kemnitz - Cossebaude	0 bis < 5
Cossebaude - Radebeul-Naundorf	5 bis < 10
Radebeul-Naundorf - Radebeul-Naundorf (Abzw)	0 bis < 5
Radebeul-Naundorf (Abzw) - Zabeltitz	5 bis < 10
Zabeltitz - Frauenhain	0 bis < 5
Frauenhain - Prösen-Wainsdorf / Prösen Ost	5 bis < 10
Prösen-Wainsdorf / Prösen Ost - Elsterwerda	0 bis < 5
Elsterwerda - Drahnsdorf	5 bis < 10
Drahnsdorf - Klasdorf Glashütte	0 bis < 5
Klasdorf Glashütte - Zossen	5 bis < 10
Zossen - Rangsdorf	0 bis < 5


Line section	Gradient
Rangsdorf - Dahlewitz	5 bis < 10
Dahlewitz - Glasower Damm Ost	< 20
Glasower Damm Ost - Selchow West	0 bis < 5
Selchow West - Grünauer Kreuz Süd	< 20
Grünauer Kreuz Süd - Berlin Eichgestell	0 bis < 5
Berlin Eichgestell - Eichgestell Nord	10 bis < 15
Eichgestell Nord - Biesdorfer Kreuz Süd	< 20
Biesdorfer Kreuz Süd - Biesdorfer Kreuz Mitte	10 bis < 15
Biesdorfer Kreuz Mitte - Biesdorfer Kreuz Nord Strw 6067/6080	5 bis < 10
Biesdorfer Kreuz Nord Strw 6067/6080 - Karower Kreuz Streckenwechsel 6067/6087	0 bis < 5
Karower Kreuz Streckenwechsel 6067/6087 - Birkenwerder (b Berlin)	< 20
Birkenwerder (b Berlin) - Borgsdorf	0 bis < 5
Borgsdorf - Sachsenhausen (Nordb)	5 bis < 10
Sachsenhausen (Nordb) - Nassenheide	0 bis < 5
Nassenheide - Dannenwalde	5 bis < 10
Dannenwalde - Fürstenberg (Havel)	0 bis < 5
Fürstenberg (Havel) - Neustrelitz Hbf	5 bis < 10
Neustrelitz Hbf - Kratzeburg	< 20
Kratzeburg - Kargow	0 bis < 5
Kargow - Waren (Müritz)	5 bis < 10
Waren (Müritz) - Grabowhöfe	10 bis < 15
Grabowhöfe - Plaaz	0 bis < 5
Plaaz - Subzin-Liessow	5 bis < 10
Subzin-Liessow - Kavelstorf	0 bis < 5
Kavelstorf - Rostock Seehafen Süd	< 20
Magdeburg - Hamburg	-
Brücke - Magdeburg-Rothensee	< 20
Magdeburg-Rothensee - Demker	0 bis < 5
Demker - Stendal (b Stendal)	5 bis < 10
Steinfeld (b Stendal) - Hohenwulsch	0 bis < 5
Hohenwulsch - Meßdorf	5 bis < 10
Meßdorf - Brunau-Packebusch	0 bis < 5
Brunau-Packebusch - Rademin	5 bis < 10
Rademin - Pretzier (Altm)	0 bis < 5
Pretzier (Altm) - Soltendieck	5 bis < 10
Soltendieck - Wieren	0 bis < 5
Wieren - Stederdorf (Kr Uelzen)	5 bis < 10
Stederdorf (Kr Uelzen) - Veerßen	0 bis < 5
Veerßen - Uelzen	5 bis < 10
Uelzen - Radbruch	0 bis < 5

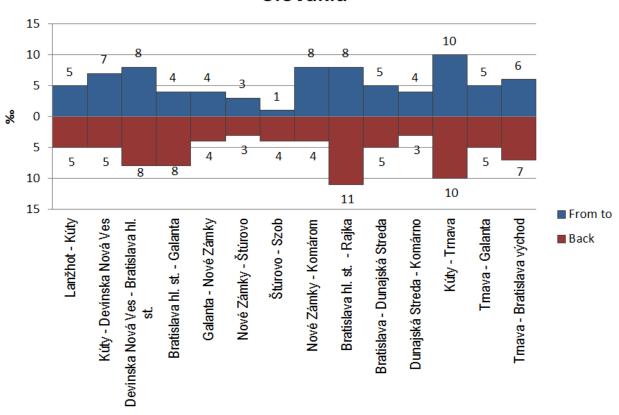
Line section	Gradient
Radbruch - Ashausen	5 bis < 10
Ashausen - Stelle	0 bis < 5
Stelle - Maschen Rbf	15 bis < 20
Maschen Rbf - Hamburg-Harburg	< 20
Hamburg-Harburg - Hamburg Süd DB-Grenze	5 bis < 10

b. Gradient in Czech Republic

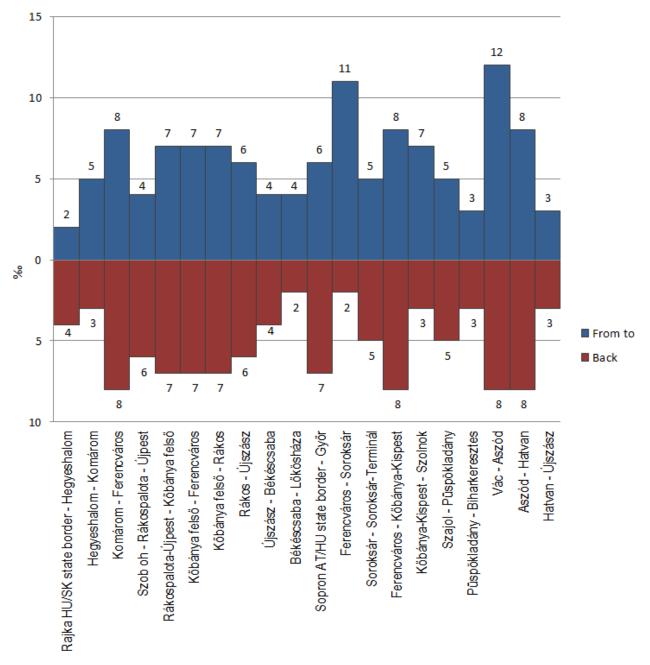


Maximum gradient (‰) on RFC OEM line in Czech republic

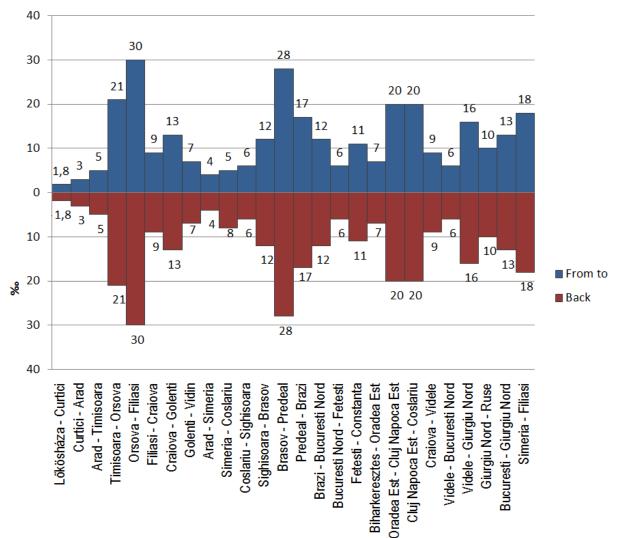
2017


c. Gradient in Austria

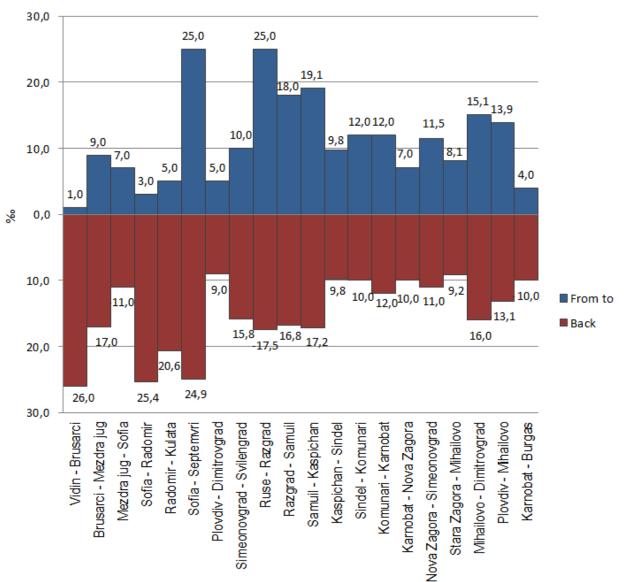
Maximum gradient (‰) on RFC OEM line in Austria


d. Gradient in Slovakia

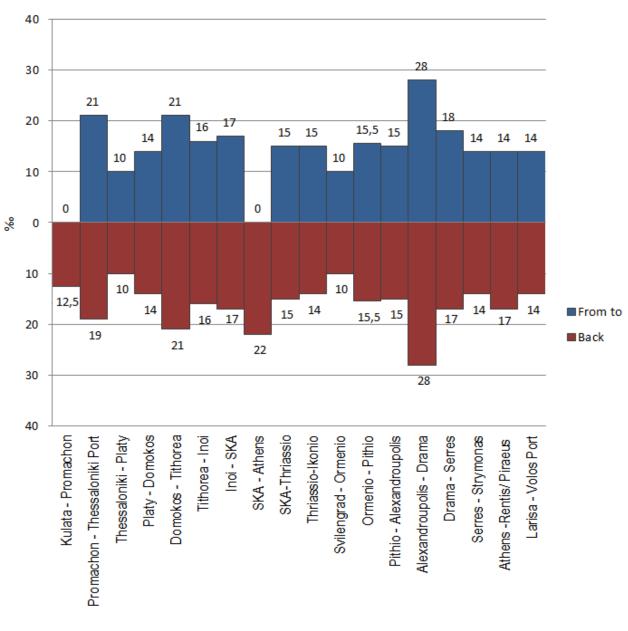
Maximum gradient (‰) on RFC OEM line in Slovakia


e. Gradient in Hungary

Maximum gradient (‰) on RFC OEM line in Hungary


f. Gradient in Romania

Maximum gradient (‰) on RFC OEM line in Romania


g. Gradient in Bulgaria

Maximum gradient (‰) on RFC OEM line in Bulgaria

h. Gradient in Greece

Maximum gradient (‰) on RFC OEM line in Greece